腾冲青海酸性湖水质特征及季节性变化
The Water Quality Characteristics and Seasonal Changes of the Acidic Lake Qinghai Crater Lake in Tengchong
DOI: 10.12677/AEP.2017.73038, PDF, HTML, XML, 下载: 1,609  浏览: 3,465  科研立项经费支持
作者: 付磊, 张虎才*, 李华勇, 常凤琴, 朱梦姝, 毕荣鑫, 路志明, 段立曾:云南师范大学旅游与地理科学学院,高原湖泊生态与全球变化实验室,云南省地理过程与环境变化重点实验室,云南 昆明
关键词: 腾冲青海酸性湖泊水质参数季节性变化Qinghai Water Quality Characteristics Seasonal
摘要: 为认识和理解酸性湖泊水质特征的季节变化原因,本文通过对云南腾冲火山口湖青海不同部位水体温度(Temp)、pH、叶绿素(Chl-a)、溶解氧(DO)以及浊度(NTU)参数进行对比分析,初步探讨了该湖水质参数季节性(11月、次年4~6月、9~10月)变化特征。研究分析结果表明:作为我国现有报道的唯一酸性高原湖泊,青海湖水质特征受季节变化影响,冷暖季分明,呈现明显空间异质性,暖季出现热力分层现象,且水深和水温是影响变化的主因(6月水温梯度达到1.98℃/m);与其他高原湖泊相比具有独特特征:pH值在湖泊不同部位存在变化复杂性,从数据分析中发现有从酸性变弱碱性的过程,持续监测和水样化学分析是搞清这个变化过程和机理的关键。溶解氧梯度效应与其他碱性湖泊先增后减不同,呈现上层较高(11月北部测定为8.44 mg/L),中层强烈变化且逐渐减少(5月南部2~2.5 m处DO从6.01下降到0.83 mg/L),深层较低(6月南部5.5 m处为0.31 mg/L)的特点;酸性湖泊与其它湖泊一样,温跃层的存在阻止上层水体溶解氧向下层传递,使上、下层水体形成明显的溶解氧梯度。
Abstract: In order to understand the relationships between water quality characteristics and seasonal changes in Tengchong Qinghai Lake, one of few acidic lakes reported in China, the water quality parameters, which including water temperature (Temp), chlorophyll-a (Chl.a), dissolved oxygen (DO), pH and turbidity (NTU) in different months of the year were measured and analyzed. The data shows a significant spatial heterogeneity and seasonal variations. Analysis results indicate that the water depth and temperature are the main factors influence the water quality characte-ristics of Qinghai acidic lake. For example, the water temperature gradient in June could be as high as 1.98˚C /m. Comparing to other alkaline lakes, the pH values of the acidic Lake Qinghai show a complex variation pattern from one measure point to another, with a lowest value of 3.9 measured in May 2016, and the pH values show a change from strong acid to weak alkaline state from Spring to the Autumn. The reason for such a low pH value is unknown. Further and continuous monitoring and chemical analysis of water samples may provide the key information to understand the process and mechanism of this water quality. It was also found that different from alkaline lakes, the contents of dissolved oxygen was high in the upper part of water layer (as high as 8.44 mg/L in November) and decreased along with water depth increase, with a obvious shift at 2~2.5m in water depth. Presence of the thermocline prevents the dissolved oxygen in upper layer water from mixing with the lower layer, forming a sharp dissolved oxygen gradient.
文章引用:付磊, 张虎才, 李华勇, 常凤琴, 朱梦姝, 毕荣鑫, 路志明, 段立曾. 腾冲青海酸性湖水质特征及季节性变化[J]. 环境保护前沿, 2017, 7(3): 263-273. https://doi.org/10.12677/AEP.2017.73038

参考文献

[1] 吴丰昌, 孟伟, 宋永会, 等. 中国湖泊水环境基准的研究进展[J]. 环境科学学报, 2008, 28(12): 2385-2393.
[2] Boehrer, B. and Schultze, M. (2009). Density Stratification and Stability. Encyclopedia of Inland Waters, 1, 583-593.
https://doi.org/10.1016/B978-012370626-3.00077-6
[3] Ka1ff, J. (2002) Limnology: Inland Water Ecosystems. Prentice Hal1, Upper Saddle River.
[4] Wetzel, R.G. (2001). Limnology: Lake and River Ecosystems. Elsevier, San Diego.
[5] Maclntyre, S., Flynn, K.M., Jellison, R., et a1. (1999). Boundary Mixing and Nutrient Fluxes in Mono Lake. California Limnol Oceanogr, 44, 512-529.
https://doi.org/10.4319/lo.1999.44.3.0512
[6] Lewis, W.M. (2011). Global Primary Production of Lakes: 19th Baldi Memorial Lecture. Inland Waters, 1, 1-28.
https://doi.org/10.5268/IW-1.1.384
[7] 李万春, 李世杰, 尹宇, 等. 青藏高原腹地半混合型湖泊的发现及其意义[J].中国科学D辑: 地球科学, 2001(31): 269-272.
[8] Brauer, A. (2004) Annually Laminated Lake Sediments and their Palaeoclimatic Relevance. In: Fischer, H., Kumke, T., Lohmann, G., et a1. Eds., The Climate in Historical Times. Springer, Heidelberg, 109-127.
https://doi.org/10.1007/978-3-662-10313-5_7
[9] Mischke, S., Zhang, C.J., Borner, A., et a1. (2010). Lateglacial and Holocene Variation in Aeolian Sediment Flux over the Northeastern Tibetan Plateau Recorded by Laminated Sediments of a Saline Meromictic Lake. Quaternary Science Reviews, 25, 162-177.
https://doi.org/10.1002/jqs.1288
[10] Bindler, R., Korsman, T., Renberg, I. and Hogberg, P. (2002) Pre-Industrial Atmospheric Pollution: Was It Important for the pH of Acid. Sensitive Swedish Lakes. Journal of the Human Environment, 31, 60-465.
https://doi.org/10.1579/0044-7447-31.6.460
[11] 朱育新, 胡守云, 王云飞, 尹宇, 潘红玺, 周万平. 酸沉降影响的湖泊沉积学证据[J]. 海洋与湖沼, 2002, 33(4): 379-385.
[12] Benison, K.C. and Bowen, B.B. (2006) Acid Saline Lake Systems Give Clues about Past Environments and the Search for Life on Mars. Note/Icarus, 183, 225-229.
https://doi.org/10.1016/j.icarus.2006.02.018
[13] 杨艺萍. 腾冲青海湖晚冰期以来的沉积记录及古植被与古气候演变[D]: [硕士学位论文]. 广州: 广州大学地理科学学院, 2013.
[14] 刘亚生, 常凤琴, 张虎才, 牛洁, 段立曾, 李华勇, 文新宇, 吴汉. 云南腾冲青海湖泊沉积物物化参数的特点、环境意义及末次冰消期以来气候环境变化[J]. 第四纪研究, 2015, 35(4): 923-934.
[15] 史正涛, 明庆忠, 张虎才. 云南高原典型湖泊演化及环境变化初步考察[J]. 地质力学学报, 2004, 10(4): 344-350, 365.
[16] 吴汉, 常凤琴, 张虎才, 李华勇, 蒙红卫, 段立曾, 刘东升, 李楠, 朱梦姝. 泸沽湖表层沉积物粒度空间分布特征及其影响因素[J]. 沉积学报, 2016, 34(4): 80-88.
[17] Dang, X.Y., Xue, J.T., Yang, H. and Xie, S.C. (2016) Environmental Impacts on the Distribution of Microbial Tetraether Lipids in Chinese Lakes with Contrasting pH: Implications for Lacustrine Paleoenvironmental Reconstructions. SCIENCE CHINA Earth Sciences, 59, 1-7.
https://doi.org/10.1007/s11430-015-5234-z
[18] 王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998.
[19] 佟伟, 章铭陶, 编. 腾冲地热[M]. 北京: 科学出版社, 1989.
[20] 郑瑾, 邵曰舜. 云南腾冲火山群区域内水环境状况分析研究[J]. 水利规划与设计, 2007(6): 21-24.
[21] 王云飞, 朱育新, 等. 云南腾冲青海-酸性湖泊的环境特征[J]. 湖泊科学, 2002, 14(2): 117-124.
[22] 秦勇, 费安玮, 金奎励, 韩德馨, 金晓珏. 云南腾冲盆地晚更新世孢粉组合及古植被、古气候和古环境演化[J]. 海洋地质与第四纪地质, 1992(1): 109-118.
[23] 王斌, 马健, 王银亚. 天山天池水体季节性分层特征[J]. 湖泊科学, 2015, 27(6): 1197-1204.
[24] 文新宇, 张虎才, 常凤琴, 等. 泸沽湖水体垂直断面季节性分层[J]. 地球科学进展, 2016, 31(8): 858-869.
[25] Zhang, Y., Wu, Z., Liu, M., et al. (2014) Thermal Structure and Response to Long-Term Climatic Changes in Lake Qiandaohu. A Deep Subtropical Reservoir in China. Limnology and Oceanography, 59, 1193-1202.
https://doi.org/10.4319/lo.2014.59.4.1193
[26] Hao, J., Chen, Y., Wang, F., et al. (2012) Seasonal Thermocline in the China Seas and Northwester Pacific Ocean. Journal of Geo-Physical Research: Oceans, 117, C02022.
https://doi.org/10.1029/2011JC007246
[27] 金相灿, 朱萱. 我国主要湖泊和水库水体的营养特征及其变化[J]. 环境科学研究, 1991, 4(1): 11-20.
[28] 赵海超, 王圣瑞, 赵明, 等. 洱海水体溶解氧及其与环境因子的关系[J]. 环境科学, 2011, 32(7): 1952-1959.
[29] Chen, C.C., Gong, G.C. and Shiah, F.K. (2007) Hypoxia in the East China Sea: One of the Largest Coastal Low Oxy- gen Areas in the World. Marine Environmental Research, 64, 399-408.
https://doi.org/10.1016/j.marenvres.2007.01.007
[30] 林佳, 苏玉萍, 钟厚璋, 等. 一座富营养化水库——福建山仔水库夏季热分层期间浮游植物垂向分布[J]. 湖泊科学, 2010, 22(2): 244-250.
[31] 夏品华, 李秋华, 林陶, 等. 贵州高原百花湖水库湖沼学变量特征及环境效应[J]. 环境科学学报, 2011, 31(8): 1660-l669.
[32] 李小平, 等. 湖泊学[M]. 北京: 科学出版社, 2013.