长江上游径流持续偏枯地区贡献度及成因研究
Spatial Contribution and Cause Analysis for Runoff Decreasing in the Upstream of Yangtze River
DOI: 10.12677/JWRR.2017.64037, PDF, HTML, XML,  被引量 下载: 1,781  浏览: 3,509  国家科技经费支持
作者: 郭海晋, 陈 玺:长江水利委员会水文局,湖北 武汉
关键词: 长江上游径流偏枯地区组成成因分析Upstream of the Yangtze River Runoff Decrease Spatial Contribution Cause Analysis
摘要: 20世纪90年代以来,长江上游来水持续偏枯,影响到长江上游水库群综合利用效益的发挥以及长江流域水资源的合理配置。本研究将长江上游分为金沙江、岷沱江、嘉陵江、乌江、长上干区间五个水系分区分别进行年径流量偏枯程度统计,分析不同分区对长江上游年径流量偏枯的贡献度,并从降雨变化和人类活动两方面对径流偏枯进行了成因分析。结果表明:(1) 1991~2015长江上游径流量偏枯贡献最大的是嘉陵江水系和长江上游干流;(2) 偏枯的主要原因是降水量偏少,其次是流域耗水量增加、上游水库拦蓄与水库库面蒸发增损。
Abstract: The upper reaches of the Yangtze River has continued to be dry years since 1990s, which will affect the comprehensive benefits of reservoirs and water resources allocation in the Yangtze River basin. In this study, the upper reaches of the Yangtze River were divided into five watersheds, i.e., Jinsha River, Mintuo River, Jialing River, Wu River and the mainstream watershed from Yibin to Yichang cities. The contribution rate of different watershed to the runoff in the upstream of the Yangtze River was analyzed. Two aspects including rainfall and human activities that may induce the runoff decreasing were discussed. The results show that: (1) Jialing River and the mainstream watersheds are the two major contributors to the runoff decreasing for the whole upper Yangtze River during the period of 1991-2015; (2) the main reason for the dryness of the upper reaches of Yangtze River is precipitation reduction, follow by the increase of water consumption, water storage loss and evaporation augment by the reservoirs.
文章引用:郭海晋, 陈玺. 长江上游径流持续偏枯地区贡献度及成因研究[J]. 水资源研究, 2017, 6(4): 309-316. https://doi.org/10.12677/JWRR.2017.64037

参考文献

[1] 蔺秋生, 黄莉, 姚仕明. 长江上游干流近期水沙变化规律分析[J]. 人民长江, 2010, 41(10): 5-8. LIN Qiusheng., HUANG Li and YAO Shiming. Analysis on variation of runoff and sediment load in main stream of upper Yangtze River in recent period. Yangtze River, 2010, 41(10): 5-8. (in Chinese)
[2] 夏军, 王渺林. 长江上游流域径流变化与分布式水文模拟[J]. 资源科学, 2008, 30(7): 962-967. XIA Jun, WANG Miaolin. Runoff changes and distributed hydrologic simulation in the upper reaches of Yangtze River. Resource Science, 2008, 30(7): 962-967. (in Chinese)
[3] 邹振华, 李琼芳, 夏自强, 等. 人类活动对长江径流量特性的影响[J]. 河海大学学报(自然科学版), 2007, 35(6): 622-626. ZOU Zhenhua., LI Qiongfang., XIA Ziqiang, et al. Human-induced alterations in runoff of the Yangtze River. Journal of Hohai University (Natural Sciences), 2007, 35(6): 622-626. (in Chinese)
[4] 黄峰, 夏自强, 王远坤. 长江上游枯水期及10月径流情势分析[J]. 河海大学学报(自然科学版), 2010, 38(2): 129-133. HUANG Feng, XIA Ziqiang., and WANG Yuankun. Runoff regimes of upstream Yangtze River in dry season and October. Journal of Hohai University (Natural Sciences), 2010, 38(2): 129-133. (in Chinese)
[5] 张利平, 李凌程, 夏军, 等. 气候波动和人类活动对滦河流域径流变化的定量影响分析[J]. 自然资源学报, 2015, 30(4): 664-672. ZHANG Liping, LI Lingcheng, XIA Jun, et al. Quantitative assessment of the impact of climate variability and human activities on runoff change in the Luanhe River catchment. Journal of Natural Resources, 2015, 30(4): 664-672. (in Chinese)
[6] LI, F., ZHANG, G., XU, Y. J. Separating the impacts of climate variation and human activities on runoff in the Songhua River Basin, Northeast China. Water, 2014, 6(11): 3320-3338.
[7] WANG, G., XIA, J., CHEN, J. Quantification of effects of climate variations and human activities on runoff by a monthly water balance model: A case study of the Chaobai River basin in northern China, Water Resource Research, 2009(45), W00A11.
[8] 胡彩虹, 王纪军, 王灏, 等. 沁河流域实测径流对环境变化的定量响应分析[J]. 气候变化研究进展, 2012, 8(3): 213-219. HU Caihong, WANG Jijun, WANG Hao, et al. Quantitative response of observed runoff in Qinhe River Water-shed to environmental change. Advance in Climate Change, 2012, 8(3): 213-219. (in Chinese)
[9] 王随继, 闫云霞, 颜明, 等. 皇甫川流域降水和人类活动对径流量变化的贡献度分析——累积量斜率变化率比较方法的提出及应用[J]. 地理学报, 2012, 67(3): 388-397. WANG Suiji, YAN Yunxia, YAN Ming, et al. Contributions of precipitation and human activities to the runoff change of the Huangfuchuan Drainage Basin: Application of compara-tive method of the slope changing ratio of cumulative quantity. ActaGeographica Sinca, 2012, 67(3): 388-397. (in Chinese)
[10] 顾海敏. 长江流域降雨特征及其对洪水的影响研究[D]: [硕士学位论文]. 南京: 南京信息工程大学, 2015. GU Haimin. Study on precipitation characteristics and its relationship with the flood in the Yangtze River Catchment. Nanjing: Nanjing University of Information Science & Technology, 2015. (in Chinese)
[11] QIAN, W., LIN, X. Regional trends in recent precipitation indices in China. Meteorology and Atmospheric Physics, 2005, 90(3-4): 193-207.
https://doi.org/10.1007/s00703-004-0101-z
[12] BECKER, S., GEMMER, M. and JIANG, T. Spatiotemporal analysis of precipitation trends in the Yangtze River catchment. Stochastic Environmental Research and Risk Assessment, 2006, 20(6): 435-444.
https://doi.org/10.1007/s00477-006-0036-7
[13] 赵军凯, 李九发, 戴志军, 等. 长江宜昌站径流变化过程分析[J]. 资源科学, 2012, 34(12): 2306-2315. ZHAO Junkai, LI Jiufa, DAI Zhijun, WANG Yibin and ZHANG Aishe. Analysis the runoff variation of Yangtze River in Yichang. Resource Science, 2012, 34(12): 2306-2315. (in Chinese)
[14] 董磊华, 熊立华, 于坤霞, 等. 气候变化与人类活动对水文影响的研究进展[J]. 水科学展, 2012, 23( 2): 278-285. DONG Leihua, XIONG Lihua, YU Kunxia, et al. Research advances in the effects of climate change and human activities on hydrology. Advances in Water Science, 2012, 23(2): 278-285. (in Chinese)
[15] 梁小军, 江洪, 朱求安, 等. 岷江上游流域不同土地利用与气候变化的径流响应研究[J]. 水土保持研究, 2008, 15(5): 30- 33. LIANG Xiaojun, JIANG Hong, ZHU Qiuan, HUANG Meiling, et al. Modelling hydrological response to different landuse and climate change scenarios in the upper reach of Minjiang River. Research of Soil and Water Conservation, 2008, 15(5): 30-33. (in Chinese)
[16] SRIWONGSITANON, N., TAESOMBAT, W. Effects of land cover on runoff coefficient. Journal of Hydrology, 2011, 410(3): 226-238.