铜钴锡硫纳米晶的制备及核磁共振成像应用
Synthesis and Application of Magnetic Reso-Nance Imaging of Cu2CoSnS4 Nanoparticle
DOI: 10.12677/MS.2017.74063, PDF, HTML, XML,  被引量 下载: 1,634  浏览: 4,635  国家自然科学基金支持
作者: 阳 月, 王自力:西南大学动物科技学院,重庆;欧才彰:西南民族大学化学与环境保护工程学院,四川 成都;刘天龙, 付长慧, 谭龙飞, 孟宪伟:中国科学院理化技术研究所,北京
关键词: 铜钴锡硫纳米晶核磁共振成像Cu2CoSnS4 Nanocrystals Magnetic Resonance Imaging
摘要: 采用溶剂热法制备了小尺寸铜钴锡硫(CCTS)纳米晶,通过X射线粉末衍射(XRD)、透射电子显微镜(TEM)、紫外可见光吸收光谱(UV-Vis)等多种手段对CCTS的尺寸、形貌,结构和组成进行表征。结果表明,产物为尺寸均一、分散性良好的纳米晶,平均粒径为13.2 nm。利用临床用3.0T核磁共振成像仪表征CCTS的T1成像效果,发现不同浓度CCTS溶液在MRI成像时具有显著的增强效果,重要的是其r1值为7.64 mM−1S−1,而且荷瘤小鼠尾静脉注射时可以显著增强肿瘤的成像效果。CCTS纳米晶具有优越的核磁共振成像增强作用,在MRI成像应用领域具有广阔的前景。
Abstract: Small Cu2CoSnS4(CCTS) nanocrystals were synthesized via a facile solvothermal method in large quantity. The morphology, size, structure and composition of the as-synthesized CCTS were char-acterized by XRD, TEM, and UV-Visible absorption spectra. The results showed that the products were nanocrystals with average particle size of 13.2 nm, uniform size and good dispersibility. T1weighted MR images of CCTS solutions were acquired on a 3.0-T clinical MR scanner, revealing the obvious concentration-dependent brightening effect. Importantly, the r1 value increased dramatically from the initial value to 7.64 mM−1S−1. Remarkable brightening effect in the tumor of injected mice was observed. These results demonstrate that the CCTS nanocrystals could be the promising MRI theranostic nano-agents and have a great application prospect.
文章引用:阳月, 欧才彰, 刘天龙, 付长慧, 谭龙飞, 王自力, 孟宪伟. 铜钴锡硫纳米晶的制备及核磁共振成像应用[J]. 材料科学, 2017, 7(4): 477-481. https://doi.org/10.12677/MS.2017.74063

参考文献

[1] Zhang, X.Y., Bao, N.Z., Ramasamy, K., Wang, Y.H.A., Wang, Y.F., Lin, B.P. and Gupta, A. (2012) Crystal Phase-Controlled Syn-thesis of Cu2FeSnS4 Nanocrystals with a Band Gap of around 1.5 eV. Chemical communications, 48, 4956-4958.
https://doi.org/10.1039/c2cc31648j
[2] Ha, E., Lee, L.Y.S., Man, H.W., Tsang, S.C.E. and Wong, K.Y. (2015) Morpholo-gy-Controlled Synthesis of Au/Cu2FeSnS4 Core-Shell Nanostructures for Plasmon-Enhanced Photocatalytic Hydrogen Generation. ACS Applied Materials & Interfaces, 7, 9072-9077.
https://doi.org/10.1021/acsami.5b00715
[3] Prabhakar, R.R., Loc, N.H., Kumar, M.H., Boix, P.P., Juan, S., John, R.A., Batabyal, S.K., Wong, L.H. (2014) Facile Water-Based Spray Pyrolysis of Earth-Abundant Cu2FeSnS4 Thin Films as an Efficient Counter Electrode in Dye- Sensitized Solar Cells. ACS Applied Materials & Interfaces, 6, 17661-17667.
https://doi.org/10.1021/am503888v
[4] Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y. and Mitzi, D.B. (2014) Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Advanced Energy Materials, 4, 403-410.
https://doi.org/10.1002/aenm.201301465
[5] Wei, K. and Nolas, G.S. (2015) Synthesis and Characterization of Nanostructured Stannite Cu2ZnSnSe4 and Ag2ZnSnSe4 for Thermoelectric Applications. ACS Applied Materials & Interfaces, 7, 9752-9757.
https://doi.org/10.1021/acsami.5b01617
[6] Munn, C., Haran, S. and Seok, I. (2013) Fabrication of CZTS Based Thin Film Solar Cells Using an All-Solution Process and Pulsed Light Crystallization. Proceedings of SPIE, 4, Article ID: 8691A.
[7] Tanaka, T., Kawasaki, D., Nishio, M., Gu, Q.X. and Ogawal, H. (2006) Fabrication of Cu2ZnSnS4 Thin Films by Co-Evaporation. Physica Status Solidi C, 3, 2844.