海水浴场粪便指标菌迁移转化模型研究进展
Advances of Fate and Transport Model for Faecal Indicator Bacteria in Coastal Bathing Water Sites
DOI: 10.12677/AEP.2017.74043, PDF, HTML, XML, 下载: 1,341  浏览: 3,883  科研立项经费支持
作者: 高广海*:南开大学环境科学与工程学院,环境污染过程与基准教育部重点实验室,天津
关键词: 滨海浴场水质模型粪便指标菌(FIB) Coastal Bathing Water Site Water Quality Model Faecal Indicator Bacteria
摘要: 致病微生物可以通过饮用水、食物或直接接触感染人群和动物。随着我国经济的高速发展和人民生活水平的提高、旅游度假经济的迅速发展,滨海浴场水质越来越受到人们的关注。海水浴场环境中的微生物污染对旅游者身体健康甚至生命安全有直接影响,越来越受到人们的重视。因此,了解、掌握和有效管理水环境中的微生物污染是相关行业和管理机构所面临的重大挑战之一。随着计算机和数值模拟技术的迅速发展,计算机模型技术正越来越多地被国内外国学者、工程咨询机构和环境管理部门应用于微生物污染的研究及制定相关政策的过程中。然而,我国关于海水浴场微生物污染预测模型的相关研究工作和发达国家相比相对滞后。本文对预测和管理海水浴场污染的有效工具数学模型的研究进展及应用进行研究和总结。
Abstract: Human and animals may be infected by pathogens in water and food consumption and direct body contact with contaminated waters. With the rapid development of economy and tourism industry and growth in the living standard, bathing water quality in China is getting more attention. The marine tourism industry is the new growth point of economic development in China. Microorganism contamination of coastal bathing water sites is a major threat to swimmers; therefore, coastal bathing water quality is getting more and more attention. The ability to predict fate and transport of faecal bacteria in bathing waters is quite challenging to water managers and government authorities. In recent years, the developments of computing technology and numerical modeling technique have provided valuable tools for water scientists, consulting companies and water management authorities to apply water quality models to bathing waters. However, advances of research on prediction model for micro-organism contamination in China is relatively slow compare to developed countries. Here in this study, the recent advances of physical-based faecal bacteria fate and transport model were studied.
文章引用:高广海. 海水浴场粪便指标菌迁移转化模型研究进展[J]. 环境保护前沿, 2017, 7(4): 309-314. https://doi.org/10.12677/AEP.2017.74043

参考文献

[1] Chapra, S.C. (1997) Surface Water-Quality Modelling. McGraw Hill, New York, 844.
[2] De Brauwere, A., de Brye, B., Servais, P., Passerat, J. and Deleersnijder, E. (2011) Modelling Escherichia coli Concentrations in the Tidal Scheldt River and Estuary. Water Research, 45, 2724-2738.
[3] Anderson, I.C., Rhodes, M. and Kator, H. (1979) Sublethal Stress in Escherichicha Coli: A Function of Salinity. Applied and Environmental Microbiology, 38, 1147-1152.
[4] Solic, M. and Krstulovic, N. (1992) Separate and Combined Effects of Solar-Radiation, Temperature, Salinity, and PH on the Survival of Fecal-Coliforms in Seawater. Marine Pollution Bulletin, 24, 411-416.
[5] Mancini, J.L. (1978) Numerical Estimates of Coliform Mortality under Various Conditions. Journal of Water Pollution Control Federation, 38, 2477-2484.
[6] Gameson, A.L.H. and Saxon, J.R. (1967) Field Studies on Effect of Daylight on Mortality of Coliform Bacteria. Water Research, 1, 279-295.
[7] Bellair, J.T., Parr-Smith, G.A. and Wallis, I.J. (1977) Significance if Diurnal Variation in Faecal Coliform Die-Off Rates in the Design of Ocean Outfalls. Journal of WPCF, 77, 2022-2030.
[8] Hipsey, M.R., Antenucci, J.P. and Brookes, J.D. (2008) A Generic, Process-Based Model of Microbial Pollution in Aquatic Systems. Water Resources Research, 44, W07408.
[9] Auer, M.T. and Niehaus, S.L. (1993) Modeling Faecal Coliform Bacteria—I. Field and Laboratory Determination of Loss Kinetics. Water Research, 27, 693-701.
[10] Jamieson, R.C., Gordon, R., Joy, D. and Lee, H. (2004) Assessing Microbial Pollution of Rural Surface Waters: A Review of Current Watershed Scale Modeling Approaches. Agricultural Water Management, 70, 1-17.
[11] Fries, J.S. Characklis, G.W. and Noble, R.T. (2006) Attachment of Fecal Indicator Bacteria to Particles in the Neuse River Estuary, N.C. Journal of Environmental Engineering, 132, 1338-1345.
[12] Characklis, G.W., et al. (2005) Microbial Partitioning to Settle Able Particles in Storm Water. Water Research, 39, 1773-1782.
[13] Gannon, J., Busse, M.K. and Schillinger, J. (1983) Faecal Coliform Disappearance in a River Impoundment. Water Research, 17, 1595-1601.
[14] Amieson, R.C., Joy, D., Lee, H., Kostaschuk, R. and Gordon, R. (2005) Re-Suspension of Sediment-Associated Escherichia in a Natural Stream. Journal of Environmental Quality, 34, 581-589.
https://doi.org/10.2134/jeq2005.0581
[15] Kashefipour, S.M., Lin, B., Harris, E. and Falconer, R. (2002) Hydro-Environmental Modelling for Bathing Water Compliance of an Esturine Basin. Water Research, 39, 1854-1868.
[16] Kashefipour, S.M., Lin, B. and Falconer, R.A. (2006) Modelling the Fate of Faecal Indicators in a Coastal Basin. Water Research, 40, 1413-1425.
[17] Bai, S. and Lung, W. (2005) Modeling Sediment Impact on the Transport of Fecal Bacteria. Water Research, 39, 5232- 5240.
[18] Gao, G., Falconer, R.A. and Lin, B. (2011) Numerical Modelling of Sediment-Bacteria Interaction Processes in Surface Waters. Water Research, 45, 1951-1960.
[19] Yang, L., Lin, B. and Falconer, R.A. (2008) Modelling Enteric Bacteria Levels in Coastal and Estuarine Waters. Proceedings of Institution of Civil Engineers, Engineering and Computational Mechanics, 161, 179-186.
[20] Stapleton, C.M., Wyer, M.D., Kay, D., Bradford, M., Humphrey, N., Wilkinson, J., Lin, B., Yang, Y., Falconer, R.A., Watkins, J., Francis, C.A., Crowther, J., Paul, N.D., Jones, K. and McDonald, A.T. (2007) Fate and Transport of Particles in Estuaries, Volume I, II, III, IV. Environment Agency Science Report SC000002/SR1-4.
[21] Gao, G., Falconer, R.A. and Lin, B. (2011) Numerical Modelling Sediment-Bacteria Interaction Processes in the Severn Estuary. Journal of Water Resource and Protection, 3, 22-31.
https://doi.org/10.4236/jwarp.2011.31003
[22] Gao, G., Falconer, R.A. and Lin, B. (2013) Modelling Importance of Sediment Effects on Fate and Transport of Enterococci in the Severn Estuary, UK. Marine Pollution Bulletin, 67, 45-54.
[23] 黄岁梁, 万兆惠, 张朝阳. 冲积河流重金属污染物迁移转化数学模型研究[J]. 水利学报, 1995(1): 47-56.
[24] Ng, B., Turner, A., Tyler, A.O., Falconer, R.A. and Millward, G.E. (1996) Modelling Contaminant Geochemistry in Estuaries. Water Research, 30, 63-74.
[25] 何用, 李义天. 重金属迁移转化模型研究[J]. 水科学进展, 2004, 15(5): 576-583.
[26] Wu, Y., Falconer, R.A. and Lin, B. (2005) Modelling Trace Metal Concentration Distributions in Estuarine Waters. Estuarine, Coastal and Shelf Science, 64, 699-709.
[27] DiToro, D.M. (2001) Sediment Flux Modelling. John Wiley & Sons Inc., Hoboken.
[28] Thomann, R.V. and Mueller, J.A. (1987) Principles of Surface Water Quality Modeling and Control. Harper Collins Publishers, New York, Chapter 8 Toxic Substance, 495-598.
[29] 禹雪中, 钟德钰, 李锦秀, 廖文根. 水环境中泥沙作用研究进展及分析[J]. 泥沙研究, 2004(6): 75-81.