中草药对结核分枝杆菌生物膜的干预
Intervention of Chinese Herbal Medicine on Biofilm of Mycobacterium Tuberculosis
DOI: 10.12677/HJMCe.2017.53007, PDF, HTML, XML, 下载: 1,584  浏览: 3,843  国家自然科学基金支持
作者: 宋善敏, 汤敏, 尹欣, 谢宗会, 尚玉维, 杨再昌*:贵州大学药学院,贵州 贵阳
关键词: 中草药结核分枝杆菌生物膜干预Traditional Chinese Medicine Mycobacterium Tuberculosis Biofilm Intervention
摘要: 结核病(TB)是由结核分枝杆菌(MTB)引起的传染性疾病,治疗时间长是结核防控面临的主要问题。结核杆菌能形成生物膜后,对抗结核药物的敏感性下降,因此,干预结核杆菌生物膜是治疗结核的新思路。本试验随机选择了11种中草药,评价其对结核杆菌生物膜的干预作用,结果表明,苦参(0.4 mg/ml)能抑制结核杆菌生物膜的形成,山茱萸(0.4、0.8、1.6、3.2、6.4 mg/ml)能促进结核杆菌生物膜的形成,并呈明显的量效关系。研究结果提示,不同中草药对结核杆菌生物膜的形成存在不同的干预结果。进一步开展活性跟踪研究,将为发现干预结核杆菌生物膜的分子骨架奠定基础。
Abstract: Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB). Long treatment time is the main problem for TB prevention and control. Mycobacterium tuberculosis can form biofilm, which could decrease bactericidal activity of anti-tuberculosis drugs. Therefore, the intervention of Mycobacterium tuberculosis biofilm is a new idea for the treatment of tuberculosis. Eleven Chinese herbs were randomly selected to evaluate their interventional effect on the formation of Mycobacterium tuberculosis biofilm. The results showed that Sophora flavescens (0.4 mg/ml) could inhibit the formation of Mycobacterium tuberculosis biofilm, and Cornus officinalis (0.4, 0.8, 1.6, 3.2, 6.4 mg/ml) could promote the formation of Mycobacterium tuberculosis biofilm and showed a dose-effect relationship. The results showed that different Chinese herbal medicine had different effect on the formation of Mycobacterium tuberculosis biofilm. Further study by bioassay guided isolation will lay the foundation for the discovery of the molecular skeleton with the interventional effect on formation of Mycobacterium tuberculosis biofilm.
文章引用:宋善敏, 汤敏, 尹欣, 谢宗会, 尚玉维, 杨再昌. 中草药对结核分枝杆菌生物膜的干预[J]. 药物化学, 2017, 5(3): 45-51. https://doi.org/10.12677/HJMCe.2017.53007

参考文献

[1] 龚立康, 肖春玲. 抗结核药物靶点研究最新进展[J]. 国外医药抗生素分册, 2006, 27(2): 49-53.
[2] Meghna A. and Bhasker, V. (2011) Drug-Resistant Tuberculosis: Emerging Treatment Options. Clinical Pharmacology: Advances and Applications, 3, 51-67.
[3] 汪静, 张惠斌, 周金培. 抗结核新靶点及相关药物的研究进展[J]. 中国药科大学学报, 2012, 43(1): 1-8.
[4] World Health Or-ganization (2016) Global Tuberculosis Report. World Health Organization, Geneva.
[5] Ojha, A.K., Trivelli, X., Guerardel, Y., Kre-mer, L. and Hatfull, G.F. (2010) Enzymatic Hydrolysis of Trehalose Dimycolate Releases Free Mycolic Acids during Mycobacterial Growth in Biofilms. Journal of Biological Chemistry, 285, 17380-17389.
https://doi.org/10.1074/jbc.M110.112813
[6] Ojha, A.K. and Hatfull, G.F. (2012) Biofilms of Mycobacterium Tuberculosis: New Perspectives of an Old Pathogen. Understanding Tu-berculosis-Deciphering the Secret Life of the Bacilli, 283, 182-191.
[7] Ojha, A.K., Anand, M., Bhatt, A., et al. (2005) GroEL1: A Dedicated Chaperone Involved in Mycolic Acid Biosynthesis during Biofilm Formation in Mycobacteria. Cell, 123, 861-873.
https://doi.org/10.1016/j.cell.2005.09.012
[8] 李建华, 宋丰贵. 细菌生物膜形成与细菌耐药机制研究进展[J]. 中国新药与临床杂志, 2008, 27(1): 70-73.
[9] 刘霞, 郭庆龙, 王若珺, 王洪海, 裴秀英, 张雪莲. 结核分枝杆菌生物膜形成相关基因的筛选与鉴定[J]. 中国生物工程杂志, 2013, 33(4): 15-21.
[10] Pang, J.M., Layre, E., Sweet, L. et al. (2011) The Polyketide Pks1 Con-tributes to Biofilm Formation in Mycobacterium Tuberculosis. Journal of Bacteriology, 194, 715-721.
https://doi.org/10.1128/JB.06304-11
[11] Parsek, M.R. and Singh, P.K. (2003) Bacterial Biofilms: An Emerging Link to Disease Pathogenesis. Journal of Microbiology, 57, 677-701.
https://doi.org/10.1146/annurev.micro.57.030502.090720
[12] 李洪敏, 冯端浩, 曹晶, 郑忠国, 王小燕, 刘蔚, 付春华. 中药苦参碱对结核杆菌的抑制作用[J]. 解放军药学学报, 2002, 18(6): 383-384.