聚醚砜(PES)多孔材料的制备与表征
Preparation and Characterization of Polyethersulfone (PES) Porous Materials
DOI: 10.12677/SSC.2017.53004, PDF, HTML, XML, 下载: 1,907  浏览: 5,120  科研立项经费支持
作者: 倪 卓, 林佩芳, 杨 莎, 林泽宇:深圳大学化学与环境工程学院,广东 深圳
关键词: 聚醚砜致孔剂孔材料孔结构吸水性能Polyethersulfone (PES) Porogen Pore Material Pore Structure Water Absorption
摘要: 选用二甲基乙酰胺(DMF)溶剂,将聚醚砜(PES)溶解,再与研磨处理的氯化钠(NaCl)致孔剂颗粒混合均匀,采用浇铸法制成PES/氯化钠(NaCl)材料。用去离子水抽提氯化钠形成PES多孔材料,研究PES的孔结构、孔隙率和吸水率等与成孔剂的关系。使用同一粒径致孔剂,得到的PES孔材料的吸水率随着致孔剂用量增大而增大,但是当PES与致孔剂超过一定质量比后,吸水率减小。使用三个不同粒径的致孔剂,PES孔材料的吸水率与孔结构尺寸没有线性关系。采用光学显微镜和扫描电镜对PES孔结构进行了表征,发现该材料是具有孔隙间连通的三维多孔材料。
Abstract: Dimethylacetamide (DMF) was used as the solvent to dissolve the polymer, and then mixed with the treated sodium chloride (NaCl) porogen granules. The polymer/sodium chloride (NaCl) materials were prepared by casting method. The PES porous materials were extracted with deionized water to study the pore structure, porosity and water absorption of PES. Using the same particle size porogen, the water absorption of the PES pore material increases with the amount of porogen, but when the mass ratio of PES and porogen is more than a certain degree, the water absorption decreased. The water absorption of the PES pore material was not linearly related to the size of the pore structure using three porosens of different particle sizes. The PES pore structure was characterized by optical microscopy and scanning electron microscopy. It was found that the material was a three-dimensional porous material with inter-pore connectivity.
文章引用:倪卓, 林佩芳, 杨莎, 林泽宇. 聚醚砜(PES)多孔材料的制备与表征[J]. 合成化学研究, 2017, 5(3): 20-28. https://doi.org/10.12677/SSC.2017.53004

参考文献

[1] 强巴单增, 赵小兰, 等. 多孔纳米羟基磷灰石/聚酰胺复合骨修复材料的制备[J]. 中国组织工程研究, 2016, 20(3): 392-396.
[2] 陈思诗, 杨庆, 沈新元, 等. 溶剂浇铸–粒子沥滤法制备PBS/PCL组织工程支架[J]. 东华大学学报(自然科学版), 2009(4): 391-395.
[3] Maria, C.R., Alessia, B., et al. (2013) Thermal and Mechanical Properties of PES/PTFE Composites and Nan Composites. Science, 3624-3633.
[4] 唐俊, 周斌, 杜艾, 张志华, 等. 孔结构渐变聚己内酯/羟基磷灰石仿生骨材料[J]. 材料科学与工艺, 2012(6): 23-28.
[5] 吴常生, 尹玉姬, 杨悦, 等. 骨组织工程中大孔支架材料制备的研究[J]. 中国临床康复, 2004(5): 929-931.
[6] 孙志猛, 任晓晶, 等. 聚醚砜纳滤膜的制备及改性研究进展[J]. 环境科学与技术, 2012(8): 88-92.
[7] 何进, 郭云珠, 曹慧玲, 等. 组织工程支架研究进展[J]. 材料导报, 2012(3): 73-77.
[8] 孙姣霞, 彭坤, 甘晓玲, 等. 基于PAPI-PDLLA仿生骨组织工程材料表面亲/疏水及降解性能的研究[J]. 功能材料, 2014(2): 2054-2058.
[9] 王月波, 汪焰恩, 魏生民, 等. 人工支架结构设计与实现[J]. 西安工业大学学报, 2012, 32(4): 382-386.
[10] 杨有财, 李荣勋, 刘光烨, 等. 热降解动力学方法研究ABS的降解机理[J]. 中国塑料, 2010, 24(7): 47-50.
[11] Kawamtra, H., Itp, A., Miya-kawa, S., et al. (2000) Stimulatory Effect of Zinc-Releasing Calcium Phosphate Implant on Bone Formation in Rabbit Femora. Biomed Materials, 50, 184-190.
https://doi.org/10.1002/(SICI)1097-4636(200005)50:2<184::AID-JBM13>3.0.CO;2-3
[12] Zhou, D., Yang, W., Yin, G., et al. (2004) In Vitro Characterizations of PLLA/β-TCP Porous Matrix Materials and Rmsc-PLLA-β-TCP Composite Scaffolds. Journals Science Technical, 20, 248-252.
[13] 陈亮, 等. 丝素蛋白/双目磷酸钙仿生多孔人工骨支架[D]. 苏州: 苏州大学, 2014, 3: 14-17.
[14] Beruto, D.T., Mezzasalma, S.A., Caperro, M., et al. (2000) Use of α-Tricalcium Phosphate (TCP) as Powders and as an Aqueous Dispersion to Modify Processing, Microstructure, and Mechanical Properties of Polymethylmethacrylate (PMMA) Bone Cements and to produce Bone-Substitute Compounds. Biomed Materials, 49, 498-505.
https://doi.org/10.1002/(SICI)1097-4636(20000315)49:4<498::AID-JBM8>3.0.CO;2-1
[15] 顾汉卿, 徐国风. 生物医学材料[M]. 天津: 天津科技翻译出版公司, 1992.
[16] 王静, 李星逸, 袁世丹. 多孔生物材料[M]. 北京: 机械工业出版社, 2014.