miR-3686调控PLK1表达相关机制的初步分析
Analysis of the Mechanism of miR-3686 Regulates PLK1
DOI: 10.12677/ACM.2017.73033, PDF, HTML, XML, 下载: 1,313  浏览: 2,896 
作者: 靳红义:中国人民解放军总医院,北京;邱新光:郑州大学第一附属医院,河南 郑州
关键词: 胰腺癌细胞miR-3686PLK1Pancreas Cancer Cell miR-3686 PLK1
摘要: 目的:探讨miR-3686调控PLK1表达相关机制。方法:生物信息学软件分析预测miR-3686作用的靶基因。构建PLK1 3’UTR区的野生型和突变型载体,分别将其与miR-3686 mimics或者miR-3686 scramble共转染入HEK293T细胞中,运用双荧光素酶报告实验验证miR-3686的作用靶基因。构建无3’UTR区PLK1的表达载体,单独转入或与miR-3686 mimics共转染入PANC1细胞中,Western blot实验检测各组细胞PLK1蛋白的表达水平;restore transwell实验检测转染后各组细胞的侵袭能力,分析miR-3686靶向调控PLK1表达的作用机制。结果:无3’UTR区的PLK1的表达可以不受miR-3686的调控而发挥增强PANC1细胞侵袭能力的作用。结论:PLK1是miR-3686的靶基因。miR-3686通过作用于靶基因PLK1基因的3’UTR区来发挥其生物学效应。
Abstract: Objective: Analysis of the mechanism of miR-3686 regulates PLK1. Methods: Bioinformatic analysis predicted the target of miR-3686. The wild-type and mutant 3’UTR segments of PLK1 were constructed into pmirGLO, then cotransfected into HEK293T cell along with miR-3686 mimics or scramble. Luciferase reporter assays determined whether PLK1 is regulated by miR-3686. pcDNA3.1-PLK1 was constructed and cotransfected into PANC1 cell with miR-3686 mimics or scramble. Western blot was used to determine the PLK1 protein expression level. Restore transwell assay was used to determine the invasion of every group, to analyze the interaction mechanism between miR-3686 and PLK1. Results: The results of bioinformatic analysis and luciferase reporter assays indicated PLK1 is regulated by miR-3686. The restore experiments showed that PLK1 without 3’UTR of wasn’t regulated by miR-3686, and its function can offset the roles of miR-3686 on the biological behavior of the pancreas carcinoma cell line PANC1. Conclusion: miR-3686 had an inverse correlation with PLK1. In pancreas carcinoma cell line PANC1, upregulation of miR-3686 inversely regulated PLK1 expression by binding to PLK1 mRNA 3’UTR, which can suppress cell proliferation, migration and promote cell cycle block, cell apoptosis.
文章引用:靳红义, 邱新光. miR-3686调控PLK1表达相关机制的初步分析[J]. 临床医学进展, 2017, 7(3): 202-207. https://doi.org/10.12677/ACM.2017.73033

参考文献

[1] Xu, J., Shen, C., Wang, T., et al. (2013) Structural Basis for the Inhibition of Polo-Like Kinase 1. Nature Structural & Molecular Biology, 20, 1047-1053.
https://doi.org/10.1038/nsmb.2623
[2] Kettenbach, A.N., Schweppe, D.K., Faherty, B.K., et al. (2011) Quantitative Phosphoproteomics Identifies Substrates and Functional Modules of Aurora and Polo-Like Kinase Activities in Mitotic Cells. Science Signaling, 4, rs5.
https://doi.org/10.1126/scisignal.2001497
[3] Bai, Y., Li, J., Fang, B., et al. (2012) Phosphoproteomics Identifies Driver Tyrosine Kinases in Sarcoma Cell Lines and Tumors. Cancer Research, 72, 2501-2511.
https://doi.org/10.1158/0008-5472.CAN-11-3015
[4] Bieging, K.T., Mello, S.S. and Attardi, L.D. (2014) Un-ravelling Mechanisms of p53-Mediated Tumour Suppression. Nature Reviews Cancer, 14, 359-370.
https://doi.org/10.1038/nrc3711
[5] Salvi, M., Trashi, E., Cozza, G., et al. (2012) Investigation on PLK2 and PLK3 Substrate Recognition. Biochimica et Biophysica Acta, 1824, 1366-1373.
[6] Bruinsma, W., Macurek, L., Freire, R., et al. (2014) Bora and Aurora-A Continue to Activate Plk1 in Mitosis. Journal of Cell Science, 127, 801-811.
https://doi.org/10.1242/jcs.137216
[7] Craig, S.N., Wyatt, M.D. and McInnes, C. (2014) Current Assessment of Polo-Like Kinases as Anti-Tumor Drug Targets. Expert Opinion on Drug Discovery, 9, 773-789.
https://doi.org/10.1517/17460441.2014.918100
[8] Gjertsen, B.T. and Schoffski, P. (2015) Discovery and Development of the Polo-Like Kinase Inhibitor Volasertib in Cancer Therapy. Leukemia, 29, 11-19.
https://doi.org/10.1038/leu.2014.222
[9] Cholewa, B.D., Liu, X. and Ahmad, N. (2013) The Role of Polo-Like Kinase 1 in Carcinogenesis: Cause or Consequence? Cancer Research, 73, 6848-6855.
https://doi.org/10.1158/0008-5472.CAN-13-2197
[10] McInnes, C. and Wyatt, M.D. (2011) PLK1 as an Oncology Target: Current Status and Future Potential. Drug Discovery Today, 16, 619-625.