Ru-Ti-AC复合催化材料对高盐废水中氯离子的电化学去除
Removal of Chloride Ion in High Salt Wastewater by Ru-Ti-AC Composite Catalytic Materials
摘要: 高浓度氯离子废水处理是目前水处理领域的难点,为克服难点设计了一种电催化去除氯离子的Ru-Ti-AC催化材料,并制备成钌钛活性炭篮式复合电极,通过电化学方法对废水中氯离子进行降解。同时通过单因素实验法和连续实验法,确定了PH为2~8,电解时间为60 min,氯离子浓度为12,000 mg/L的条件下,本实验制备的钌钛活性炭复合电极(Ru-Ti-AC)对氯离子废水中氯离子去除率可达到80%,同时这种方法对实际脱硫废水中的氯离子废水也有很强的去除能力,工业化实际氯离子去除率可达75%。
Abstract: Treatment of high chloride wastewater is difficult. To overcome this difficulty, a kind of material is designed containing Ru, Ti and activated carbon to remove chloride, and Ru-Ti-AC composite basket electrode is manufactured, through electrochemical method to remove chlorine in wastewater. Cl− removal efficiency of catalytic basket electrode in different factors and an in-depth research of Cl− removal mechanism were studied. The experiments were carried out under the conditions of initial pH of 2, reaction time of 60 min, electric current density of 400 mA, Cl− concentration of 12,000 mg/L. The experimental result showed that removal of Cl− could reach 80% in the laboratory. The composite basket electrode also had a good treatment effect on actual high chloride wastewater, and the removal rate of Cl− could reach 75% in the industrialized treatment of desulfurization waste water.
文章引用:刘诗杰, 王麒钧, 肖松, 朱凯, 屈钧娥, 王海人. Ru-Ti-AC复合催化材料对高盐废水中氯离子的电化学去除[J]. 化学工程与技术, 2017, 7(5): 215-224. https://doi.org/10.12677/HJCET.2017.75031

参考文献

[1] 郭春梅, 陈进富. 离子交换树脂再生废水回用处理模拟试验研究[J]. 环境工程学报, 2008, 2(10): 50-53.
[2] Lv, L., Sun, P., Gu, Z., Du, H., Pang, X., Tao, X., Xu, R. and Xu, L. (2009) Removal of Chlorine Ion from Aqueous Solution by ZnAl-NO3 Layered Double Hydroxides as Anion-Exchanger. Journal of Hazardous Materials, 161, 1444-1449.
https://doi.org/10.1016/j.jhazmat.2008.04.114
[3] 胡静, 吕亮. 镁铝水滑石去除氯离子性能研究[J]. 工业水处理, 2008, 28(6): 59-61.
[4] 徐建国, 尹华. 海水淡化反渗透膜技术的最新进展和应用[J]. 膜科学与技术, 2014, 34(2): 99-105.
[5] 张建明. 电吸附除盐技术在某纺织集团的工程应用[J]. 工业水处理, 2015(3): 100-102.
[6] Gao, W., Smith, D.W. and Sego, D.C. (2000) Freezing Temperatures of Freely Falling Industrial Wastewater Droplets. Journal of Cold Regions Engineering, 14, 101-118.
https://doi.org/10.1061/(ASCE)0887-381X(2000)14:3(101)
[7] Gao, W., Smith, D.W. and Sego, D.C. (2004) Release of Contaminants from Melting Spray Ice of Industrial Wastewaters. Journal of Cold Regions Engineering, 18, 35-51.
https://doi.org/10.1061/(ASCE)0887-381X(2004)18:1(35)
[8] 周贵忠, 王绚. 多孔铁–碳–稀土合金填料对高盐废水中氯离子的去除[J]. 环境工程学报, 2013, 7(6): 2167-2172.
[9] 化娜丽, 路帅. 离子交换去除炼厂难降解废水中氯离子的静态实验研究[J]. 无机盐工业, 2015, 47(11): 66-69.
[10] 茹振修, 王颖, 王化军, 等. 焦化废水除盐深度处理试验研究[J]. 中国有色冶金, 2012, 41(2): 65-69.
[11] 何毅, 苏鹤祥, 李光明, 等. 纳滤膜在染料工业脱盐浓缩中的应用[J]. 水处理技术, 2005(2): 73-76.
[12] 崔馨心, 谢海燕, 肖乐, 等. 电吸附对水中盐类、氨氮、COD的去除效果分[J]. 环境工程学报, 2013, 7(12): 4805-4810.
[13] 魏杰. 钛基氧化物电极的制备及其在水处理中的应用[J]. 环境保护科学, 2002, 28(4): 10-12.
[14] 张招贤. 涂层钛电极[M]. 北京: 北京冶金工业出版社, 2014: 105-106, 213-217.
[15] 方度, 蒋兰荪, 等. 氯碱工艺学[M]. 北京: 化学工业出版社, 1990: 69-97.
[16] 王麒钧, 王麒宁. 一种活性炭篮作阳极电化学降解有机废水的方法及装置: 201210398371.0 [P]. 2012.10.19 [2017.6.20]. [IPC号]C02F1/461;|C02F1/463;|C02F1/72.
[17] 柴立元, 孙竹梅, 舒余德, 等. 一种三维电极电吸附去除硫酸体系氯离子: 201610392863.7 [P]. 2016.06.06[2017.6.20].
[18] Yang, X. (2009) Interior Microelectrolysis Oxidation of Polyester Wastewater and Its Treatment Technology. Journal of Hazardous Materials, 169, 480-485.
[19] Barrera-Diaz, C., Urena-Nunez, F., Campos, E., et al. (2003) A Combined Electrochemical-Irradiation Treatment of Highly Colored and Polluted Industrial Wastewater. Radiation Physics and Chemistry, 67, 657-663.
[20] 刘咏, 赵仕林, 叶宣宏. pH对电解处理垃圾渗滤液的影响[J]. 环境工程学报, 2009, 3(4): 653-658.
[21] Gao, P., Chen, X., Shen, F., et al. (2005) Removal of Chromium from Wastewater by Combined Electro-Coagulation Electroflotation without a Filter. Separation and Purification Technology, 43, 117-123.
https://doi.org/10.1016/j.seppur.2004.10.008