采用光子晶体禁带法检测溶液浓度的新方法研究
New Method of Solution Concentration Detection Using Photonic Band Gap
摘要: 为了研究液体浓度检测用的光子晶体传感器特性,本文选择二维三角晶格光子晶体材料硅(Si)作为基底,在空气孔内填充不同质量摩尔浓度的待测溶液,计算出了溶液填充的光子晶体在不同偏振模式下的禁带宽度。给出了光子带隙中心所在频率位置的理论依据,应用光子晶体平面波展开法和已有的仿真数据。计算出了带隙中心所在频率位置与待测甲醇–水溶液浓度之间的关系。仿真结果表明,待测甲醇–水溶液的浓度与光子带隙中心频率之间存在正比例线性关系,本文选取溶液浓度检测范围为0.05~0.60 mol/L,并对不同结构产生的带隙位置进行了线性拟合,得到最终的拟合公式,这说明甲醇溶液浓度与带隙中心频率位置存在线性函数关系。
Abstract: In order to investigate the characteristics of the photonic crystal sensor for liquid concentration detection, in this paper, two-dimensional triangular lattice photonic crystal material silicon (Si) is chosen as the base, in which a solution with different mass mole concentrations is filled in the air hole to calculate the band gap of the photonic crystals with different polarization modes. The theoretical foundation of the frequency position center of photonic band gap is given. In addition, the relationship between the frequency position of the band gap center and the concentration of the methanol-water solution to be measured are calculated by using the planar wave expansion method and the existing simulation data. The simulation results imply that there is a positive proportional linear relationship between the concentration of the methanol-water solution and the center frequency of the photonic band gap. In this work, the range of solution concentration is 0.05~0.60 mol/L, and the linear fitting of the band gap position produced by different structures is obtained, and the final fitting formula is found, which indicates that the concentration of methanol solution is linear relationship with the center frequency of the band gap.
文章引用:阿不都热苏力•阿不都热西提. 采用光子晶体禁带法检测溶液浓度的新方法研究[J]. 应用物理, 2017, 7(9): 277-282. https://doi.org/10.12677/APP.2017.79034

参考文献

[1] Yablonovitch, E. (1987) Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 20, 2059-2062.
https://doi.org/10.1103/PhysRevLett.58.2059
[2] John, S. (1987) Strong Localization of Photon in Certain Disordered Dielectric Superlattice. Physical Review Letters, 23, 2486-2489.
https://doi.org/10.1103/PhysRevLett.58.2486
[3] 袁桂芳, 韩利红, 俞重远, 等. 二维光子晶体禁带特性研究[J]. 物理学报, 2011(10): 104214.
[4] Dana, G. and Paul, S. (2011) FDTD Analysis of Photonic Crystals with Square and Hexagonal Symmetry. Journal of Advanced Research in Physics, 2, Article ID: 021105.
[5] Mohsen-Nia, M. and Amiri, H. (2013) Measurement and Modelling of Aqueous Solutions of Methanol, Ethanol and Acetic Acid at T=293.15 K and 91.3 kPa. The Journal of Chemical Thermodynamics, 2, 67-70.
https://doi.org/10.1016/j.jct.2012.08.009
[6] Christopher, W., Krister, B., Norbert, L. and Schwarz, U.T. (2009) Photonic Crystal LEDs-Designing Light Extraction. Laser & Photonics Reviews, 3, 262-286.
https://doi.org/10.1002/lpor.200810053
[7] Ardavan, F.O., David, R. and Mihai, I. (2010) A Flexible Free-Soft-Ware Package for Electromagnetic Simulation by the FDTD Method. Computer Physics Communications, 3, 687-702.
[8] 阿不都热苏力, 帕孜来提, 阿布都外力. 光子晶体理论应用于二元溶液浓度测量的研究[J]. 激光与光电子学进展, 2015, 52(1): 112-116
[9] 刘京. 基于光子晶体光纤的液体浓度检测方法研究[D]: [博士学位论文]. 沈阳: 东北大学信息科学与工程学院, 2010.
[10] Palai, G, Tripathy, S.K., Muduli, N., Patnaik, D. and Patnaik, S.K. (2012) A Novel Method to Measure the Strength of Cygel TM by Using Two Dimensional Photonic Crystal Structures. AIP Conference Proceedings, 1461, 383-386.
https://doi.org/10.1063/1.4736926
[11] 王豆豆, 张涛. 太赫兹光子带隙光纤的设计及传输特性模拟[J]. 应用物理, 2014(4): 61-67.
[12] 阿不都热苏力, 帕孜来提, 等. 平面波展开法在质量分数测量上的应用研究[J]. 激光技术, 2014(1): 65-69.
[13] Pendry, J.B. and Mackinnon, A. (1992) Calculation of Photon Dispersion Relations. Physical Review Letters, 19, 2772-2775.
https://doi.org/10.1103/PhysRevLett.69.2772
[14] Plihal, M., Shambrook, A., Maradudin, A.A. and Sheng, P. (1991) Two-Dimensional Photonic Band Structures. Optics Communications, 80, 199-204.
https://doi.org/10.1016/0030-4018(91)90250-H
[15] 阿不都热苏力, 帕尔哈提. 二维光子晶体及其光子带结构研究[J]. 新疆大学学报, 2003(1): 32-35.
[16] 帕孜来提, 阿不都热苏力, 阿卜杜外力. 基于光子晶体的物质的量浓度测量研究[J]. 激光杂志, 2014(2): 28-29.