一类资源分配策略模型的推广
Generalized for a Class of Resource Allocation Strategy Model
DOI: 10.12677/AAM.2017.66088, PDF, HTML, XML, 下载: 1,520  浏览: 2,052  国家自然科学基金支持
作者: 王亚强:宝鸡文理学院,数学与信息科学学院,陕西 宝鸡;李耀堂:云南大学,数学与统计学院,云南 昆明
关键词: 繁殖分配性别分配存活分配进化稳定策略适合度Reproductive Allocation Sex Distribution Survival Distribution Evolutionary Stable Strategies Fitness
摘要: 在经典资源分配策略模型的基础上,建立了包含繁殖分配、存活分配和性别分配的更具一般性的资源分配策略模型。通过对所建模型分析发现:1) 当成年存活率,雌性适合度和后代存活率是资源投入的线性函数,且雄性适合度是资源投入的幂函数时,繁殖分配与性别分配互不影响;2) 当繁殖分配大于0且小于0.5时,生存分配随着繁殖分配增大而增大;当繁殖分配大于0.5且小于1时,生存分配随着繁殖分配增大而减小;特别地,当繁殖分配等于0.5时,生存分配不随繁殖分配的变化而变化。本文结果为植物中的“多生劣养”或“少生优养”的现象提供一个合理的理论解释。
Abstract: Based on the classic resource allocation model, a general resource allocation strategy model is presented which includes reproductive allocation, survival allocation and sex allocation. From the analyzing the generalized model, we find that: 1) when the adult survivorship, the fitness of female and the juvenile survivorship are linear function of their respective resource investment, and the fitness of male is power function of its respective resource investment, reproductive allocation is independent on sex allocation; 2) when reproductive allocation is greater than 0 and smaller than 0.5, survival allocation increases as reproductive allocation increases; when reproductive allocation is greater than 0.5 and smaller than 1, survival allocation increases as reproductive allocation decreases; in particular, when reproductive is equal to 0.5, survival allocation is independent on reproductive allocation. These results provide a reasonable explanation for the phenomenon of “more reproducing but less caring” and “less reproducing but more caring” in the plant kingdom.
文章引用:王亚强, 李耀堂. 一类资源分配策略模型的推广[J]. 应用数学进展, 2017, 6(6): 734-739. https://doi.org/10.12677/AAM.2017.66088

参考文献

[1] 赵志刚, 杜国祯, 刘左军. 雌雄同花植物的性分配[J]. 生态学报, 2005, 25(10): 2725-2733.
[2] 张大勇. 理论生态学研究[M]. 北京: 高等教育出版社, 2000: 66-78.
[3] 赵志刚, 杜国祯, 任青吉. 5种毛茛科植物个体大小依赖的繁殖分配和性分配[J]. 植物生态学报, 2004, 28(1): 9- 16.
[4] Charnov, E.L. (1982) The Theory of Sex Allocation. Monographs in Population Biology, 18, 121-129.
[5] Bell, G. (1980) The Costs of Reproduction and Their Consequences. The American Naturalist, 116, 45-76.
https://doi.org/10.1086/283611
[6] Zhang, D.Y. and Wang, G. (1994) Evolutionarily Stable Reproductive Strategies in Sexual Organisms: An Integrated Approach to Life-History Evolution and Sex Allocation. American Naturalist, 144, 65-75.
https://doi.org/10.1086/285661
[7] 苏晓磊, 曾波, 乔普, 阿依巧丽, 黄文军. 冬季水淹对秋华柳的开花物候及繁殖分配的影响[J]. 生态学报, 2010, 30(10): 2585-2592.
[8] 侯勤正, 叶广继, 马小兵, 苏雪, 张世虎, 孙坤. 青藏高原不同生境下湿生扁蕾(Gentianopsis paludosa)个体大小依赖的繁殖分配[J]. 生态学报, 2016, 36(9): 2686-2694.
[9] Wenk, E.H. and Falster, D.S. (2015) Quantifying and Understanding Reproductive Allocation Schedules in Plants. Ecology & Evolution, 5, 5521-5538.
https://doi.org/10.1002/ece3.1802
[10] Baldanzi, S., Mcquaid, C.D. and Porri, F. (2015) Temperature Effects on Reproductive Allocation in the Sandhopper Talorchestia capensis. Biological Bulletin, 228, 181-191.
https://doi.org/10.1086/BBLv228n3p181
[11] Brzyski, J.R., Taylor, W. and Mcletchie, D.N. (2014) Reproductive Allocation between the Sexes, across Natural and Novel Habitats, and Its Impact on Genetic Diversity. Evolutionary Ecology, 28, 247-261.
https://doi.org/10.1007/s10682-013-9672-9
[12] West, S.A. (2010) Sex Allocation. Princeton: Princeton University Press, 257-273.
https://doi.org/10.1038/srep33976
[13] Wang, Y.Q., Li, Y.T. and Wang, R.W. (2016) The Evolution of Optimal Re-source Allocation and Mating Systems in Hermaphroditic Perennial Plants. Scientific Reports, 6, 33976.
[14] Fudenberg, D. and Tirole, J. (1991) Game Theory. Mit Press Books, 841-846.
[15] 书睿. 果树的大小年现象[J]. 西北园艺: 果树专刊, 2013(3): 50-51.