基于风险元传递的连锁故障预测和评估
Cascading Failure Forecast and Risk Assessment Model Based on Risk Element Transfer
DOI: 10.12677/SG.2017.75042, PDF, HTML, XML, 下载: 1,354  浏览: 3,167  国家科技经费支持
作者: 钱宇骋*, 张晶晶, 丁 明:安徽省新能源利用与节能省级实验室(合肥工业大学),安徽 合肥
关键词: 电力系统连锁故障预测风险元传递风险评估风险重要度Power System Cascading Failure Forecast Risk Element Transfer Risk Assessment Risk Importance
摘要: 基于风险元传递理论研究连锁故障发展机理,预测连锁故障发展路径,对连锁故障进行风险评估。首先综合考虑了线路自身故障、潮流转移、隐性故障和天气等风险元对初始线路停运和后续线路停运的影响,建立了线路停运风险元传递模型;根据线路停运与连锁故障发生的风险元传递结构,建立了连锁故障风险元传递模型。其次,结合风险理论,建立了基于风险元传递的连锁故障预测和评估模型,预测连锁故障的发展路径,并计算连锁故障风险以及故障环节风险重要度。最后,以IEEE30节点系统的算例验证了所述方法的有效性。
Abstract: Based on the risk element transfer theory, the development mechanism of cascading failures is studied, and the development path of cascading failures is predicted, and the risk assessment of cascading failures is conducted. Firstly, considering the influence of the risk factors such as the line’s own fault, the transferring power flow, hidden failure and the weather on the outage of the initial line and the subsequent outage of the line, the risk element transfer model of the outage of the line is established. Based on the risk element transfer structure of line outage and cascading failures, the risk element transfer model of cascading failures is established. Secondly, based on risk theory, the cascading failures prediction and evaluation model based on risk element transfer is established. The development path of cascading failures is predicted, and the risk of cascading failures and the importance of fault link are calculated. Finally, the simulation of IEEE 30-bus test system proves the availability of the method.
文章引用:钱宇骋, 张晶晶, 丁明. 基于风险元传递的连锁故障预测和评估[J]. 智能电网, 2017, 7(5): 381-391. https://doi.org/10.12677/SG.2017.75042

参考文献

[1] 印永华, 郭剑波, 赵建军, 卜广全. 美加“8.14”大停电事故初步分析以及应吸取的教训[J]. 电网技术, 2003, 27(10): 8-11.
[2] 梁志峰, 葛睿, 董昱, 陈刚. 印度“7.30”、“7.31”大停电事故分析及对我国电网调度运行工作的启示[J]. 电网技术, 2013, 37(7): 1841-1848.
[3] Dobson, I., Carreras, B.A., Lynch, V.E., et al. (2001) An Initial Model for Complex Dynamics in Electric Power System Blackouts. Proceedings of the Annual Hawaii International Conference on System Sciences, Maui, IEEE, 51-55.
https://doi.org/10.1109/HICSS.2001.926274
[4] 曹一家, 陈彦如, 曹丽华, 等. 复杂系统理论在电力系统中的应用研究展望[J]. 中国电机工程学报, 2012, 32(19): 1-9.
[5] 丁明, 韩平平. 加权拓扑模型下的小世界电网脆弱性评估[J]. 中国电机工程学报, 2008, 28(10): 20-25.
[6] 吴文可, 文福栓, 薛禹胜, 等. 基于马尔科夫链的电力系统连锁故障预测[J]. 电力系统自动化, 2013, 37(5): 29-37.
[7] 丁明, 肖遥, 张晶晶, 何剑. 基于事故链及动态故障树的电网连锁故障风险评估模型[J]. 中国电机工程学报, 2015, 35(4): 821-829.
[8] 李存斌. 电力系统风险元传递理论与应用[M]. 北京: 中国电力出版社, 2013: 16-20.
[9] 史慧杰, 葛斐, 丁明, 等. 输电网络运行风险的在线评估[J]. 电网技术, 2005, 29(6): 43-48.
[10] Phadke, A.G. and Thorp, J.S. (1996) Expose Hidden Failures to Prevent Cascading Outages. IEEE Computer Application in Power, 9, 20-23.
https://doi.org/10.1109/67.526849
[11] 沈智健, 周家启, 卢继平, 等. 距离保护运行风险评估模型[J]. 电力系统自动化, 2008, 32(12): 7-12.
[12] Yu, X.B. and Singh, C. (2004) A Practical Approach for Integrated Power System Vulnerability Analysis with Protection Failures. IEEE Transactions on Power Systems, 19, 1811-1820.
https://doi.org/10.1109/TPWRS.2004.835656
[13] 何剑, 程林, 孙元章, 王鹏. 条件相依的输变电设备短期可靠性模型[J]. 中国电机工程学报, 2009, 29(7): 39-46.
[14] 马超, 肖先勇, 李长松, 等. 电网连锁性故障识别和风险评估基本框架与模型[J]. 中国电机工程学报, 2013, 33(31): 99-105.
[15] 姚峰, 张保会, 周德才. 输电断面有功安全性保护及其快速算法[J]. 中国电机工程学报, 2006, 26(13): 31-36.
[16] 顾卓远, 汤涌, 张健, 等. 基于相对动能的电力系统暂态稳定实时紧急控制方案[J]. 中国电机工程学报, 2014, 34(7): 1095-1102.
[17] Fan, J.L. and Pei, J.H. (1998) Cluster Validity Based on Possibilistic Distribution. Acta Electronica Sinica, 26, 113-115. (In Chinese)