云贵高原植被资源分布现状及其对石漠化进程研究进展
The Review of Current Distribution of Vegetation Resources in Yunnan-Guizhou Plateau and the Mechanism Research of Its Effects on Rocky Desertification Process
摘要: 云贵高原是西南喀斯特石漠化的核心区域,现有研究存在难以定量描述石漠化进程这一关键科学问题的缺陷。因此许多学者采用植被资源作为定量化描述石漠化危害程度的重要指标,早期的方法仅使用遥感影像难以准确区分大范围的植被类型、覆盖度和斑块破碎度等精细信息。前期研究表明,利用当前日益成熟的无人机技术和研究成员早期开发的盖度、斑块估算软件,结合多源遥感数据,可以准确、快速地反演植被资源信息。在云贵高原研究植被资源信息的空间分布现状,阐明其对石漠化进程的影响机制,通过对地形、气候、人口、经济和政策资料进行分析,揭示导致石漠化时空分布格局差异的控制因子及其动态变化的驱动因素。可望摸清云贵高原的植被资源分布现状,特别是实现对草地资源的更新,不仅为解决石漠化这一严重地域环境问题提供研究基础和科学依据,也为山地草牧业修复云贵高原生态环境、提高当地人民收入的规划提供宝贵的本底资料。
Abstract: Yunnan-Guizhou Plateau is the core area of the rocky desertification in the Chinese southwest karst regions. Previous studies are very limited to describe the process of rocky desertification quantitatively. The vegetation resources are applied as the key indicators to quantitatively study the degree of rocky desertification by many researchers. With the remote sensing datasets, previous methods are not competent to distinguish the detailed information of vegetation type, coverage and patch fragmentation on a large scale. Our previous researches show that the technology of unmanned aerial vehicle and the estimation software of fraction vegetation coverages and patches could be accurately and rapidly to exploit vegetation resource information. In this project, current distribution of vegetation resources in Yunnan-Guizhou Plateau will be clarified to reveal the influence mechanism of the rocky desertification. The control factors of rocky desertification distribution and the driving reasons of its dynamic changes will be explained by the data of terrain, climate, population, economics and policy. In this way, current distribution of vegetation resources in Yunnan-Guizhou Plateau will be provided, especially the grassland resources will be updated. The finding of this research may have significant implications for resolving rocky desertification. Furthermore, the results of this study will be the background information for the programs of restoring ecological environment and enriching local people in Yunnan-Guizhou Plateau.
文章引用:阮玺睿, 莫本田, 马培杰, 丁磊磊, 张文, 陈伟, 雷霞, 孙方, 王志伟. 云贵高原植被资源分布现状及其对石漠化进程研究进展[J]. 可持续发展, 2017, 7(4): 217-225. https://doi.org/10.12677/SD.2017.74027

参考文献

[1] Liu, B., Chen, C., Lian, Y., Chen, J. and Chen, X. (2015) Long-Term Change of Wet and Dry Climatic Conditions in the Southwest Karst Area of China. Global Planet Change, 127, 1-11.
[2] 郭柯, 刘长成, 董鸣. 我国西南喀斯特植物生态适应性与石漠化治理[J]. 植物生态学报 2011, 10: 991-999.
[3] 薛治国, 陈浒, 李晓娜, 王仙攀. 云贵高原石漠化与古气候演变分析[J]. 安徽农业科学 2010, 23(38): 12303-12305.
[4] 姚永慧. 中国西南喀斯特石漠化研究进展与展望[J].地理科学进展 2014, 01 (33):76-84.
[5] 马华, 王云琦, 王力, 王益坤. 近20a广西石漠化区植被覆盖度与气候变化和农村经济发展的耦合关系[J]. 山地学报 2014, 1(32): 38-45.
[6] Wang, Z., Wang, Q., Wu, X., Zhao, L., Yue, G., Nan, Z., Wang, P., Yi, S., Zou, D., Qin, Y., et al. (2017) Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas. PLOS ONE, 1, e0169732.
https://doi.org/10.1371/journal.pone.0169732
[7] 陈君颖, 田庆久. 高分辨率遥感植被分类研究[J]. 遥感学报, 2007, 2(11): 221-227.
[8] 刘旭升, 张晓丽. 森林植被遥感分类研究进展与对策[J]. 林业资源管理 2004, 1: 61-64.
[9] Xiao, X., Boles, S., Liu, J., Zhuang, D. and Liu, M. (2002) Characterization of Forest Types in Northeastern China, Using Multi-Temporal SPOT-4 VEGETATION Sensor Data. Remote Sensing of Environment, 2, 335-348.
[10] Jia, K., Liang, S., Gu, X., Baret, F. and Wei, X. (2016) Fractional Vegetation Cover Estimation Algorithm for Chinese GF-1 Wide Field View Data. Remote Sensing of Environment, 177, 184-191.
[11] 李丽, 童立强, 李小慧. 基于植被覆盖度的石漠化遥感信息提取方法研究[J]. 国土资源遥感, 2010, 2: 59-62.
[12] Forman (1995) Land Mosaic: The Ecology of Landscapes and Regions. Cambridge University Press, Cambridge.
[13] 黄秋昊, 蔡运龙, 王秀春. 我国西南部喀斯特地区石漠化研究进展[J]. 自然灾害学报, 2007, 2(16): 106-111.
[14] Liu, M, Xu, X, Wang, D, Sun, A.Y. and Wang, K. (2016) Karst Catchments Exhibited Higher Degradation Stress from Climate Change than the Non-Karst Catchments in Southwest China: An Ecohydrological Perspective. Journal of Hydrology, No. 535, 173-180.
[15] Bartholomeus, H., Kooistra, L., Stevens, A., Leeuwen, M.V. and Wesemael, B.V. (2011) Soil Organic Carbon Mapping of Partially Vegetated Agricultural Fields with Imaging Spectroscopy. International Journal of Applied Earth Observation, 13, 81-88.
[16] 徐圣旺, 孙凡, 姚小华, 何丙辉, 任华东, 李生. 滇东喀斯特地区季节性石漠化与植被盖度的动态关系研究[J]. 水土保持学报, 2010, 1(24): 128-133.
[17] Wang, Z.W., Wang, Q., Zhao, L., Xiao-Dong, W.U. and Yue, G.Y. (2016) Mapping the Vegetation Distribution of the Permafrost Zone on the Qinghai-Tibet Plateau. Journal of Mountain Science, 13, 1035-1046.
[18] 王志伟, 史健宗, 岳广阳, 赵林, 南卓铜, 吴晓东, 乔永平, 吴通华, 邹德福. 玉树地区融合决策树方法的面向对象植被分类[J]. 草业学报, 2013, 5(22): 62-71.
[19] 翁中银, 何政伟, 于欢. 基于决策树分类的地表覆盖遥感信息提取[J]. 地理空间信息, 2012, 2(10): 110-112.
[20] 张秀敏, 盛煜, 南卓铜, 赵林, 周国英, 岳广阳. 基于决策树方法的青藏高原温泉区域高寒草地植被分类研究[J]. 草业科学, 2011, 12: 2074-2083.
[21] Ni, J. (2000) A Simulation of Biomes on the Tibetan Plateau and Their Responses to Global Climate Change. Mountain Research and Development, 20, 80-89.
https://doi.org/10.1659/0276-4741(2000)020[0080:ASOBOT]2.0.CO;2
[22] Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A. and Solomon, A.M. (1992) Special Paper: A Global Biome Model Based on Plant Physiology and Dominance. Soil Properties and Climate, 2, 117-134.
[23] Melillo, J.M., Mcguire, A.D., Kicklighter, D.W., Moore, B. and Vorosmarty, C.J. (1993) Global Climate Change and Terrestrial Net Primary Production. Nature, 363, 234-240.
https://doi.org/10.1038/363234a0
[24] Parton, W.J., Scurlock, J., Ojima, D.S., Gilmanov, T.G. and Scholes, R.J. (1993) Observations and Modeling of Biomass and Soil Organic Matter Dynamics for the Grassland Biome Worldwide. Global Biogeochemical Cycles, 7, 785-809.
https://doi.org/10.1029/93GB02042
[25] Neilson, R.P. and Marks, D. (1994) A Global Perspective of Regional Vege-tation and Hydrologic Sensitivities from Climatic Change. Journal of Vegetation Science.
https://doi.org/10.2307/3235885
[26] Haxeltine, A. and Prentice, I.C. (1996) BIOME3: An Equilibrium Terrestrial Biosphere Model Based on Ecophysiological Constraints, Resource Availability, and Competition among Plant Functional Types. Global Biogeo-chemical Cycles, 4, 693-709.
https://doi.org/10.1029/96GB02344
[27] Kaplan, J.O. (2003) Climate Change and Arctic Ecosys-tems: 2. Modeling, Paleodata-Model Comparisons, and Future Projections. Journal of Geophysical Research, D19, 8171.
https://doi.org/10.1029/2002JD002559
[28] Foley, J.A., Prentice, I.C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S. and Hax-eltine, A. (1996) An Integrated Biosphere Model of Land Surface Processes, Terrestrial Carbon Balance, and Vegetation Dynamics. Global Biogeochemical Cycles, 4, 603-628.
https://doi.org/10.1029/96GB02692
[29] Sitch, S., Huntingford, C., Gedney, N., Levy, P.E., Lomas, M., Piao, S.L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., et al. (2008) Evaluation of the Terrestrial Carbon Cycle, Future Plant Geography and Climate-Carbon Cycle Feedbacks using Five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 9, 2015-2039.
[30] 梁天刚, 冯琦胜, 黄晓东, 任继周. 草原综合顺序分类系统研究进展[J]. 草业学报, 2011, 5: 252-258.
[31] 杨依天, 郑度, 张雪芹, 刘羽. 1980-2010年和田绿洲土地利用变化空间耦合及其环境效应[J]. 地理学报, 2013, 6(68): 813-824.
[32] 张景华, 封志明, 姜鲁光. 土地利用/土地覆被分类系统研究进展[J]. 资源科学, 2011, 6(33): 1195-1203.
[33] 张翠萍, 牛建明, 董建军, 刘朋涛, 李秀萍, 贾晋峰. 植被制图的发展与现状[J]. 中山大学学报(自然科学版), 2005, S2(44): 245-249.
[34] 王志伟, 王茜, 李世歌, 王普昶, 刘秀峰, 谢彩云, 史健宗, 吴佳海, 王小利, 陆瑞霞, 等. 贵州喀斯特近30年植被生长特征分析[J]. 草业科学, 2016, 11: 2180-2188.
[35] Zhang, C., Lu, D., Chen, X., Zhang, Y., Maisupova, B. and Tao, Y. (2016) The Spatiotemporal Patterns of Vegetation Coverage and Biomass of the Temperate Deserts in Central Asia and Their Relationships with Climate Controls. Remote Sensing of Environment, No. 175, 271-281.
[36] Roberts, D.A., Dennison, P.E., Roth, K.L., Dudley, K. and Hulley, G. (2015) Relationships between Dominant Plant Species, Fractional Cover and Land Surface Temperature in a Mediterranean Ecosystem. Remote Sensing of Environment, No. 167, 152-167.
[37] Jiapaer, G., Chen, X. and Bao, A. (2011) A Comparison of Methods for Estimating Fractional Vegetation Cover in Arid Regions. Agricultural and Forest Meteorology, 151, 1698-1710.
[38] Wen, Z.M., Lees, B.G., Feng, J., Lei, W.N. and Shi, H.J. (2010) Stratified Vegetation Cover Index: A New Way to Assess Vegetation Impact on Soil Erosion. Catena, 83, 87-93.
[39] Purevdorj, T., Tateishi, R., Ishiyama, T. and Honda, Y. (1998) Relationships between Percent Vegetation Cover and Vegetation Indices. International Journal of Remote Sensing, 19, 3519-3535.
https://doi.org/10.1080/014311698213795
[40] Zhang, X., Liao, C., Li, J. and Sun, Q. (2013) Fractional Vegetation Cover Esti-mation in Arid and Semi-Arid Environments using HJ-1 Satellite Hyperspectral Data. International Journal of Applied Earth Observa-tion, 21, 506-512.
[41] Tucker, C.J. (1979) Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing of Environment, 8, 127-150.
[42] Graetz, R.D., Pech, R.P. and Davis, A.W. (1988) The Assessment and Monitoring of Sparsely Vegetated Rangelands using Calibrated Landsat Data. International Journal of Remote Sensing, 9, 1201-1222.
[43] North, P.R.J. (2002) Estimation of fAPAR, LAI, and Vegetation Fractional Cover from ATSR-2 Imagery. Remote Sensing of Environment, 1, 114-121.
[44] Tian, H., Cao, C., Chen, W., Bao, S., Yang, B. and Myneni, R.B. (2015) Response of Vegetation Activity Dynamic to Climatic Change and Ecological Restoration Programs in Inner Mongolia from 2000 to 2012. Ecological Engineering, No. 82, 276-289.
[45] Yi, S., Zhou, Z., Ren, S., Xu, M., Qin, Y., Chen, S. and Ye, B. (2011) Effects of Permafrost Degradation on Alpine Grassland in a Semi-Arid Basin on the Qinghai-Tibetan Plateau. Environmental Research Letters, 4, Article ID: 045403.
https://doi.org/10.1088/1748-9326/6/4/045403
[46] Jordan, C.F. (1969) Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology, 50, 663-666.
https://doi.org/10.2307/1936256
[47] Bhardwaj, A., Sam, L., Akanksha, Martín-Torres, F.J., Kumar, R., Universitet, L.T. and Rymdteknik, I.F.R.S. (2016) UAVs as Remote Sensing Platform in Glaciology: Present Applications and Future Prospects. Remote Sensing of Environment, No. 175, 196-204.
[48] Wdwz Peng, Z.R. (2015) A Study of Vertical Distribution Patterns of PM2.5 Con-centrations Based on Ambient Monitoring with Unmanned Aerial Vehicles: A Case in Hangzhou, China. Atmospheric Environment, 123, 357-369.
[49] Colomina, I. and Molina, P. (2014) Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Re-view. ISPRS Journal of Photogrammetry and Remote Sensing, No. 92, 79-97.
[50] 丰炳财, 徐高福, 胡锦生, 董飞岳, 徐高翔, 李秀平, 贾荣兵. 千岛湖区新型多功能景观游憩林建设研究[J]. 浙江林业科技, 2000, 5(20): 64-70.
[51] 傅伯杰, 陈利顶. 景观多样性的类型及其生态意义[J]. 地理学报, 1996, 5: 454-462.
[52] 田育红, 刘鸿雁. 草地景观生态研究的几个热点问题及其进展[J]. 应用生态学报, 2003, 3: 427-433.
[53] Klein, J.A., Harte, J. and Zhao, X.Q. (2004) Experimental Warming Causes Large and Rapid Species Loss, Dampened by Simulated Grazing, on the Tibetan Plateau. Ecology Letters, 7, 1170-1179.
https://doi.org/10.1111/j.1461-0248.2004.00677.x
[54] Li, X.L., Gao, J., Brierley, G., Qiao, Y.M., Zhang, J. and Yang, Y.W. (2013) Rangeland Degradation on the Qinghai-Tibet Plateau: Implications for Rehabilitation. Land Degradation & Development, 1, 72-80.
https://doi.org/10.1002/ldr.1108
[55] 陶陶, 罗其友. 农业的多功能性与农业功能分区[J]. 中国农业资源与区划, 2004, 1(25): 45-49.
[56] 李阳兵, 白晓永, 周国富, 兰安军, 龙健, 安裕伦, 梅再美. 中国典型石漠化地区土地利用与石漠化的关系[J]. 地理学报, 2006, 6: 624-632.
[57] 邵景安, 李阳兵, 王世杰, 魏朝富, 谢德体. 岩溶山区不同岩性和地貌类型下景观斑块分布与多样性分析[J]. 自然资源学报, 2007, 3(22): 478-485.
[58] Jiang, Z., Lian, Y. and Qin, X. (2014) Rocky Desertification in Southwest China: Impacts, Causes, and Restoration. Earth-Science Reviews, No. 132, 1-12.
[59] Eris, E. and Wittenberg, H. (2015) Estimation of Baseflow and Water Transfer in Karst Catchments in Mediterranean Turkey by Nonlinear Recession Analysis. Journal of Hydrology, 530, 500-507.
[60] Žebre, M., Stepišnik, U., Colucci, R.R., Forte, E. and Monegato, G. (2016) Evolution of a Karst Polje Influenced by Glaciation: The Gomance Piedmont Polje (Northern Dinaric Alps). Geomorphology, No. 257, 143-154.
[61] 袁道先. 全球岩溶生态系统对比:科学目标和执行计划[J]. 地球科学进展, 2001, 4(16): 461-466.
[62] 熊康宁, 黎平, 周忠发. 喀斯特石漠化的遥感-GIS典型研究: 以贵州省为例[M]. 北京: 地质出版社, 2002.
[63] 胡宝清, 严志强, 廖赤眉, 韦小妮, 覃开贤. 喀斯特石漠化与地质-生态环境背景的空间相关性分析——以广西都安瑶族自治县为例[J]. 热带地理, 2004, 3: 226-230.
[64] 王兮之, 李森, 王金华. 粤北典型岩溶山区土地石漠化景观格局动态分析[J]. 中国沙漠, 2007, 5(27): 758-764.
[65] 白晓永, 白晓永, 白晓永, 王世杰, 王世杰, 陈起伟, 程安云, 程安云, 倪雪波, 倪雪波. 贵州土地石漠化类型时空演变过程及其评价[J]. 地理学报, 2009, 5: 609-618.
[66] Zhang, X., Shang, K., Cen, Y., Shuai, T. and Sun, Y. (2014) Estimating Ecological Indicators of Karst Rocky Desertification by Linear Spectral Unmixing Method. International Journal of Applied Earth Observation, 31, 86-94.
[67] 王磊, 蔡运龙. 人口密度的空间降尺度分析与模拟——以贵州猫跳河流域为例[J]. 地理科学进展, 2011, 5(30): 635-640.
[68] Xu, E., Zhang, H. and Li, M. (2013) Mining Spatial Information to Investigate the Evolution of Karst Rocky Desertification and Its Human Driving Forces in Changshun, China. Science of the Total Environment, No. 458-460, 419-426.
[69] 宋同清, 彭晚霞, 杜虎, 王克林, 曾馥平. 中国西南喀斯特石漠化时空演变特征、发生机制与调控对策[J]. 生态学报, 2014, 18: 5328-5341.