新型氯膦酸二钠脂质体灌肠剂诱导小鼠巨噬细胞凋亡
A Novel Clodronate Liposomal Enema Induces Apoptosis in Murine Macrophages
DOI: 10.12677/WJCR.2017.74014, PDF, HTML, XML,  被引量 下载: 1,618  浏览: 3,707  科研立项经费支持
作者: 杨永红:甘肃博睿生物科技有限公司,甘肃 兰州;甘肃省儿童医院,甘肃 兰州;兰州大学第二医院,甘肃省消化系肿瘤重点实验室,甘肃 兰州;李海波:南通市妇幼保健院,江苏 南通;王兴民:甘肃博睿生物科技有限公司,甘肃 兰州
关键词: 氯膦酸二钠脂质体巨噬细胞清除剂细胞凋亡Clodronate Liposome Macrophage Depleting Reagent Apoptosis
摘要: 目的:探讨一种氯膦酸二钠脂质体灌肠剂的制备及其诱导巨噬细胞凋亡的作用。方法:以DPPC和胆固醇为主要组分并添加带负电荷的磷酸二鲸蜡酯,用薄膜水化法制备脂质体;用MTT法测定该氯膦酸二钠脂质体对离体培养的小鼠巨噬细胞的致死活性;以免疫印迹法和流式细胞术对该氯膦酸二钠脂质体诱导的细胞凋亡进行了研究。结果:薄膜水化法制备所得的脂质体粒径适于巨噬细胞吞噬。用离体培养的小鼠巨噬细胞对氯膦酸二钠脂质体灌肠剂的细胞致死活性进行评估,该氯膦酸二钠脂质体制剂可有效地杀伤巨噬细胞,其细胞毒性随浓度而增加;免疫印迹法可从氯膦酸二钠脂质体处理的细胞提取物中检测到显著增加的活性半胱天冬酶-3,表明氯膦酸二钠脂质体可诱导细胞凋亡;流式细胞术检测Annexin V的结果确证氯膦酸二钠脂质体可诱导巨噬细胞凋亡。结论:该氯膦酸二钠脂质体制剂可诱导巨噬细胞凋亡从而清除巨噬细胞,有望用于某些免疫性疾病和炎症性疾病的辅助治疗。
Abstract: Aim: To investigate apoptotic effect of a novel clodronate liposomal enema. Methods: A novel clodronate liposomal enema was developed by thin-film hydration using DPPC, cholesterol, and negatively charged dicetylphosphate. Lethality of clodronate liposomes was determined by MTT assay using RAW264.7 murine macrophages. Clodronate liposome-induced apoptosis was investigated by Western blotting and fluorescence-activated cell sorting (FACS). Results: A novel clodronate liposomal enema was developed by thin-film hydration. This liposomal enema had a size range that is suitable for phagocytosis. MTT assay showed that this clodronate liposomal enema efficiently caused cytotoxicity of RAW264.7 murine macrophages in a dose-dependent manner. Western blots showed remarkably increased cleaved caspase-3 in clodronate liposome-treated RAW264.7 cells compared to controls, indicating apoptosis induced by clodronate liposomes. In addition, FACS analysis for Annexin V confirmed that clodronate liposomes induced apoptosis in RAW264.7 macrophages. Conclusion: This clodronate liposomal enema is capable of inducing macrophage apoptosis, and may be used for macrophage depletion in certain diseases as an adjuvant therapy.
文章引用:杨永红, 李海波, 王兴民. 新型氯膦酸二钠脂质体灌肠剂诱导小鼠巨噬细胞凋亡[J]. 世界肿瘤研究, 2017, 7(4): 90-98. https://doi.org/10.12677/WJCR.2017.74014

参考文献

[1] van Rooijen, N., Sanders, A. and van den Berg, T.K. (1996) Apoptosis of Macrophages Induced by Liposome-Mediated Intracellular Delivery of Clodronate and Propamidine. Journal of Immunological Methods, 193, 93-99.
https://doi.org /10.1016/0022-1759(96)00056-7
[2] Merlini, G. and Turesson, I. (1996) Utility of Bisphosphonates in Treating Bone Metastases. Medical Oncology, 13, 215-221.
https://doi.org /10.1007/BF02990934
[3] Dominguez, L.J., Di Bella, G., Belvedere, M. and Barbagallo, M. (2011) Physiology of the Aging Bone and Mechanisms of Action of Bisphosphonates. Biogerontology, 12, 397-408.
https://doi.org /10.1007/s10522-011-9344-5
[4] Mufamadi, M.S., Pillay, V., Choonara, Y.E., Du Toit, L.C., Modi, G., Naidoo, D. and Ndesendo, V.M. (2011) A Review on Composite Liposomal Technologies for Specialized Drug Delivery. Journal of Drug Delivery, 2011, 939851.
https://doi.org /10.1155/2011/939851
[5] Li, Y., Lee, P.Y. and Reeves, W.H. (2010) Monocyte and Macrophage Abnormalities in Systemic Lupus Erythematosus. Archivum Immunologiae et Therapiae Experimentalis, 58, 355-364.
https://doi.org /10.1007/s00005-010-0093-y
[6] Chalmers, S.A., Chitu, V., Herlitz, L.C., Sahu, R., Stanley, E.R. and Putterman, C. (2015) Macrophage Depletion Ameliorates Nephritis Induced by Pathogenic Antibodies. Journal of Autoimmunity, 57, 42-52.
https://doi.org /10.1016/j.jaut.2014.11.007
[7] Thomas, D. and Apovian, C. (2017) Macrophage Functions in Lean and Obese Adipose Tissue. Metabolism, 72, 120-143.
https://doi.org /10.1016/j.metabol.2017.04.005
[8] Bobryshev, Y.V., Nikiforov, N.G., Elizova, N.V. and Orekhov, A.N. (2017) Macrophages and Their Contribution to the Development of Atherosclerosis. Results and Problems in Cell Differentiation, 62, 273-298.
https://doi.org /10.1007/978-3-319-54090-0_11
[9] Qian, B.Z. and Pollard, J.W. (2010) Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell, 141, 39-51.
https://doi.org /10.1016/j.cell.2010.03.014
[10] Yang, Y., Wang, X., Huycke, T., Moore, D.R., Lightfoot, S.A. and Huycke, M.M. (2013) Colon Macrophages Polarized by Commensal Bacteria Cause Colitis and Cancer through the Bystander Effect. Translational Oncology, 6, 596-606.
https://doi.org /10.1593/tlo.13412
[11] Popovska, O. (2014) An Overview: Methods for Preparation and Characterization of Liposomes as Drug Delivery Systems. International Journal of Pharmaceutical and Phytopharmacological Research, 3.
[12] Calvagno, M.G., Celia, C., Paolino, D., Cosco, D., Iannone, M., Castelli, F., Doldo, P. and Frest, M. (2007) Effects of Lipid Composition and Preparation Conditions on Physical-Chemical Properties, Technological Parameters and In Vitro Biological Activity of Gemcitabine-Loaded Liposomes. Current Drug Delivery, 4, 89-101.
https://doi.org /10.2174/156720107779314749
[13] Vorauer-Uhl, K., Wagner, A., Borth, N. and Katinger, H. (2000) Determination of Liposome Size Distribution by Flow Cytometry. Cytometry, 39, 166-171.
https://doi.org /10.1002/(SICI)1097-0320(20000201)39:2<166::AID-CYTO10>3.0.CO;2-M
[14] Supino, R. (1995) MTT Assays. Methods in Molecular Biology, 43, 137-149.
https://doi.org /10.1385/0-89603-282-5:137
[15] Otake, K., Shimomura, T., Goto, T., Imura, T., Furuya, T., Yoda, S., Takebayashi, Y., Sakai, H. and Abe, M. (2006) Preparation of Liposomes Using an Improved Supercritical Reverse Phase Evaporation Method. Langmuir, 22, 2543-2550.
https://doi.org /10.1021/la051654u
[16] Krasnici, S., Werner, A., Eichhorn, M.E., Schmitt-Sody, M., Pahernik, S.A., Sauer, B., Schulze, B., Teifel, M., Michaelis, U., Naujoks, K. and Dellian, M. (2003) Effect of the Surface Charge of Liposomes on Their Uptake by Angiogenic Tumor Vessels. International Journal of Cancer, 105, 561-567.
https://doi.org /10.1002/ijc.11108
[17] Frohlich, E. (2012) The Role of Surface Charge in Cellular Uptake and Cytotoxicity of Medical Nanoparticles. International Journal of Nanomedicine, 7, 5577-5591.
https://doi.org /10.2147/IJN.S36111
[18] Gabizon, A. and Papahadjopoulos, D. (1988) Liposome Formulations with Prolonged Circulation Time in Blood and Enhanced Uptake by Tumors. Proceedings of the National Academy of Sciences of the United States of America, 85, 6949-6953.
https://doi.org /10.1073/pnas.85.18.6949
[19] Hirota, K. and Terada, H. (2012) Endocytosis of Particle Formulations by Macrophages and Its Application to Clinical Treatment. INTECH Open Access Publisher.
https://doi.org /10.5772/45820
[20] Pratten, M.K. and Lloyd, J.B. (1986) Pinocytosis and Phagocytosis: The Effect of Size of a Particulate Substrate on Its Mode of Capture by Rat Peritoneal Macrophages Cultured In Vitro. Biochimica et Biophysica Acta, 881, 307-313.
https://doi.org /10.1016/0304-4165(86)90020-6
[21] Lee, J.S., Hwang, S.Y. and Lee, E.K. (2015) Imaging-Based Analysis of Liposome Internalization to Macrophage Cells: Effects of Liposome Size and Surface Modification with PEG Moiety. Colloids and Surfaces B: Biointerfaces, 136, 786-790.
https://doi.org /10.1016/j.colsurfb.2015.10.029
[22] Selander, K.S., Monkkonen, J., Karhukorpi, E.K., Harkonen, P., Hannuniemi, R. and Vaananen, H.K. (1996) Characteristics of Clodronate-Induced Apoptosis in Osteoclasts and Macrophages. Molecular Pharmacology, 50, 1127-1138.