|
[1]
|
Copolovici, D.M., Langel, K., Eriste, E., et al. (2014) Cell-Penetrating Peptides: Design, Synthesis, and Applications. ACS Nano, 8, 1972-1994. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bechara, C. and Sagan, S. (2013) Cell-Penetrating Peptides: 20 Years Later, Where Do We Stand? FEBS Letters, 587, 1693-1702. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Bolhassani, A. (2011) Potential Efficacy of Cell-Penetrating Peptides for Nucleic Acid and Drug Delivery in Cancer. Biochimicaet Biophysica Acta (BBA)—Reviews on Cancer, 1816, 232-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Futaki, S. (2005) Membrane-Permeable Arginine-Rich Peptides and the Translocation Mechanisms. Advanced Drug Delivery Reviews, 57, 547-558. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Futaki, S., Nakase, I., Tadokoro, A., et al. (2007) Arginine-Rich Peptides and Their Internalization Mechanisms. Biochemical Society Transactions, 35, 784-787. [Google Scholar] [CrossRef]
|
|
[6]
|
Berlose, J.P., Convert, O., Derossi, D., et al. (1996) Conformational and Associative Behaviours of the Third Helix of Antennapedia Homeodomain in Membrane-Mimetic Environments. The FEBS Journal, 242, 372-386. [Google Scholar] [CrossRef]
|
|
[7]
|
Ding, H.M. and Ma, Y.Q. (2012) Role of Physicochemical Properties of Coating Ligands in Receptor-Mediated Endocytosis of Nanoparticles. Biomaterials, 33, 5798-5802. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Tian, W.D. and Ma, Y.Q. (2012) Insights into the Endosomal Escape Mechanism via Investigation of Dendrimer-Membrane Interactions. Soft Matter, 8, 6378-6384. [Google Scholar] [CrossRef]
|
|
[9]
|
Verkleij, A.J., Zwaal, R.F.A., Roelofsen, B., et al. (1973) The Asymmetric Distribution of Phospholipids in the Human Red Cell Membrane. A Combined Study Using Phospholipases and Freeze-Etch Electron Microscopy. BiochimicaetBiophysica Acta (BBA)—Biomembranes, 323, 178-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Sahu, S.K., Gummadi, S.N., Manoj, N., et al. (2007) Phospholipid Scramblases: An Overview. Archives of Biochemistry and Biophysics, 462, 103-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Li, Z.L., Ding, H.M. and Ma, Y.Q. (2012) Translocation of Polyarginines and Conjugated Nanoparticles across Asymmetric Membranes. Soft Matter, 9, 1281-1286. [Google Scholar] [CrossRef]
|
|
[12]
|
Ding, H.M. and Ma, Y.Q. (2015) Theoretical and Computational Investigations of Nanoparticle-Biomembrane Interactions in Cellular Delivery. Small, 11, 1055-1071. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ding, H.M., Tian, W.D. and Ma, Y.Q. (2012) Designing Nanoparticle Translocation through Membranes by Computer Simulations. ACS Nano, 6, 1230-1238. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yang, K. and Ma, Y.Q. (2010) Computer Simulation of the Translocation of Nanoparticles with Different Shapes across a Lipid Bilayer. Nature Nanotechnology, 5, 579-583. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Shi, X., Kong, Y. and Gao, H. (2008) Coarse Grained Molecular Dynamics and Theoretical Studies of Carbon Nanotubes Entering Cell Membrane. Acta Mechanica Sinica, 24, 161-169. [Google Scholar] [CrossRef]
|
|
[16]
|
Wang, J., Wei, Y., Shi, X., et al. (2013) Cellular Entry of Gra-phenenanosheets: The Role of Thickness, Oxidation and Surface Adsorption. RSC Advances, 3, 15776-15782. [Google Scholar] [CrossRef]
|
|
[17]
|
Marrink, S.J., Risselada, H.J., Yefimov, S., et al. (2007) The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. The Journal of Physical Chemistry B, 111, 7812-7824. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Agrawal, P., Bhalla, S., Usmani, S.S., et al. (2016) CPPsite 2.0: A Repository of Experimentally Validated Cell-Penetrating Peptides. Nucleic Acids Research, 44, D1098-D1103. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Monticelli, L., Kandasamy, S.K., Periole, X., et al. (2008) The MARTINI Coarse-Grained Force Field: Extension to Proteins. Journal of Chemical Theory and Computation, 4, 819-834. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Takechi, Y., Yoshii, H., Tanaka, M., et al. (2011) Physicochemical Mechanism for the Enhanced Ability of Lipid Membrane Penetration of Polyarginine. Langmuir, 27, 7099-7107. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Marrink, S.J., De Vries, A.H. and Mark, A.E. (2004) Coarse Grained Model for Semiquantitative Lipid Simulations. The Journal of Physical Chemistry B, 108, 750-760. [Google Scholar] [CrossRef]
|
|
[22]
|
Wassenaar, T.A., Ingólfsson, H.I., Böckmann, R.A., et al. (2015) Computational Lipidomics with Insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. Journal of Chemical Theory and Computation, 11, 2144-2155. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lee, H. and Larson, R.G. (2006) Molecular Dynamics Simulations of PAMAM Dendrimer-Induced Pore Formation in DPPC Bilayers with a Coarse-Grained Model. The Journal of Physical Chemistry B, 110, 18204-18211. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Essmann, U., Perera, L., Berkowitz, M.L., et al. (1995) A Smooth Particle Mesh Ewald Method. The Journal of Chemical Physics, 103, 8577-8593. [Google Scholar] [CrossRef]
|
|
[25]
|
Li, Y., Chen, X. and Gu, N. (2008) Computational Investigation of Interaction between Nanoparticles and Membranes: Hydrophobic/Hydrophilic Effect. The Journal of Physical Chemistry B, 112, 16647-16653. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Van Der Spoel, D., Lindahl, E., Hess, B., et al. (2005) GROMACS: Fast, Flexible, and Free. Journal of Computational Chemistry, 26, 1701-1718. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Humphrey, W., Dalke, A. and Schulten, K. (1996) VMD: Visual Molecular Dynamics. Journal of Molecular Graphics, 14, 33-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
He, X., Lin, M., Sha, B., et al. (2015) Coarse-Grained Molecular Dynamics Studies of the Translocation Mechanism of Polyarginines across Asymmetric Membrane under Tension. Scientific Reports, 5, Article No. 12808. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Su, Y., Waring, A.J., Ruchala, P., et al. (2010) Membrane-Bound Dynamic Structure of an Arginine-Rich Cell-Penetrating Peptide, the Protein Transduction Domain of HIV TAT, from Solid-State NMR. Biochemistry, 49, 6009-6020. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Lee, H. and Larson, R.G. (2008) Coarse-Grained Molecular Dynamics Studies of the Concentration and Size Dependence of Fifth- and Seventh-Generation PAMAM Dendrimers on Pore Formation in DMPC Bilayer. The Journal of Physical Chemistry B, 112, 7778-7784. [Google Scholar] [CrossRef] [PubMed]
|