两类权重为3的二维光正交码的容量及构造
Two Classes of Optical Orthogonal Code with Weight 3
DOI: 10.12677/PM.2018.82022, PDF, HTML, XML,  被引量 下载: 1,387  浏览: 3,122  国家自然科学基金支持
作者: 黄月梅*:内蒙古师范大学,数学科学学院,内蒙古 呼和浩特;张桂芝:呼伦贝尔学院,初等教育学院,内蒙古 海拉尔
关键词: 二维光正交码轨道最大容量Two-Dimensional Optical Orthogonal Code Orbit Maximum
摘要: 自1989年提出光正交码的概念以来,关于光正交码的最大容量及构造方法一度成为组合设计与编码理论领域的研究热点。光正交码是为码分多址光纤信道而设计的专用码。本文运用组合计数和代数方法确定了汉明重为3,自相关值为1、2,互相关值为2的两类二维光正交码的最大容量,并给出相应码字结构。
Abstract: The optical orthogonal code had been studied since 1989. The study of optical orthogonal codes has been motivated by applications in optical code-division multiple access system. In this paper, the maximum volume has been determined for two classes of two dimensional optical orthogonal codes of hamming weight 3 with auto-correlation parameter that is 1,2 and cross-correlation parameter is 2, and gave the direct construction of it.
文章引用:黄月梅, 张桂芝. 两类权重为3的二维光正交码的容量及构造[J]. 理论数学, 2018, 8(2): 174-181. https://doi.org/10.12677/PM.2018.82022

1. 引言

n , m , λ a λ c 是正整数,则一个参数为 ( n × m , k , λ a , λ c ) 的二维光正交码,C (简单记作 2 - D ( n × m , k , λ a , λ c ) O O C ),是满足特定条件的 n × m ( 0 , 1 ) -矩阵(码字)的集合,其中k, λ a λ c 分别称为该正交码的权重,自相关值和互相关值。令 Ω ( n × m , k ) 表示 I n × Z m 中所有k元组的集合,其中 I n = { 0 , 1 , , n 1 } 是模m的剩余类加法群。设C是一给定的二维光正交码,对每个-矩阵,令其行标和列标分别取值于集合,使得当且仅当矩阵A的元素。于是,二维,C,可以视作集合的一个子集,其元素满足下列两个条件:

1) 自相关性:对任意和每个,有

2) 互相关性:对任意的和每个,有

其中且所有加法模m计算。

时,一个通常称作一维。二维光正交码中所含码字个数称为其容量。对给定的正整数n和m,用表示所有的最大容量。若,上述符号可简写为

光正交码是为码分多址(OCDMA)光纤信道而设计的一种专用码。光正交码的研究始于1989年 [1] 。关于一维光正交码已有许多研究结果,参见文献 [2] [3] 及其中所列参考文献。实际应用,需要大容量相关性能好的光正交码。二维光正交码正是为克服一维光正交码的码字长,稳定性差等不足而提出的。二维光正交码的研究主要集中在的情况,参见文献 [4] 中所列的参考文献。当时,王建民等 [5] ,冯弢等 [2] 和王小苗等 [6] 给出的最大容量及部分无限类的构造方法。本文确定当时,的最大容量,并给出直接构造法。我们主要证明

定理1. 设n和m是正整数,则

2. 基础知识

下面先介绍在证明结论时所涉及到的基本概念和相关结论。

对任意的,定义,称为X的平移。于是,群作用于。集合称为X所生成的轨道。包含m个元素的轨道称为长轨道,否则称为短轨道。显然,在群的作用下集合被划分成若干个轨道。

。对任意,定义X的-纯差是一个多重集合,其中加法模m计算。再令表示多重集中元素的最大重数。于是由文献 [4] ,

(1.1)

例1. 下列四个-矩阵构成一个

, , ,

通过标记矩阵中1的位置,四个矩阵可以转换成上的四个3-元组

, ,

,

3. 当时,的最大容量

根据二维光正交码的定义和式(1.1),不难证明一个,C,是集合在群作用下一些长轨道代表元X的集合。从而在群作用下满足的长轨道的个数。

我们在文献 [4] 中证明了一个的最大容量就是集合在群作用下所有长轨道个数。

引理2.1:( [4] )设n,m和k是正整数。是莫比乌斯函数,则

因此恰好是在群作用下所有长轨道的个数。因此引理2.1中取得下面的推论。

推论2.2:设n和m是正整数。则

由平移的定义,一个的轨道代表元的形式总可以写作, 其中,并且可以分如下三种形式:

形式1:

形式2:

形式3:互不相同且

表示码字的导出组。定义的差集为多重集合,并且中基础元素的集合又称为的支集,记作。则由文献 [3] 的引理2.2得

由此可得下列结论:

引理2.3:设m是正整数。码字满足当且仅当有下列形式之一:

1)

2),其中

3),其中

设Q是在群作用下的任意轨道。若,则。于是,有下列结论:

引理2.4:对,若,则X只能有下列形式之一:

1),其中

2),其中

4. 当时,的最大容量

为确定的值,我们首先要确定满足条件的所有长轨道的个数。令表示在群作用下所有满足条件的长轨道的集合。根据引理2.4,可以写成两个互不相交的集合的并,不妨设, 其中

于是,。下面分别计算的大小。

根据引理2.3,又可以写成下列三个互不相交的子集合的并,,其中

引理3.1:设n和m是正整数,若,则,否则为0。

证明:根据集合的定义,对给定的,若,则。显然此三个区组属于同一条轨道。于是,结论得证。

引理3.2:设n和m是正整数,则

证:设Q是中任意轨道,则必有使得。故。再令。若X和属于同一条轨道,则总存在某个使得。这等价于,即,。由此得。若,则。由此得,否则若。于是得,这与的定义矛盾。若,则。由此得。经计算仍得,矛盾。若,则。由此得,即。否则若,则仍得,矛盾。综上分析,若X和属于同一条轨道,则。反之显然。故,,其中表示满足方程的个数。经详细计算引理结论得证。

引理3.3:设n和m是正整数。则

证:证明过程与引理3.1类似。

引理3.4:设n和m是正整数。则

证:由,且互不相交,故。经详细计算结论得证。

引理3.5:设n和m是正整数。则

证:设Q是中任意一条轨道。则由引理2.3知,必存在使得,其中。而且。这里,否则,这与矛盾。因此若,则当且仅当。于是,若,则集合可以改写为

为确定中轨道个数,我们定义映射使得。对任意,下面先确定的值。

,其中。若,其中。则,故存在使得,即,这等价于。由此得。于是。反之显然。故

这表明,对任意的,有。故,

根据前面引理的结果定理1证明如下:

证:根据引理2.1,得,其中再结合推论2.2,引理3.4,和引理3.5,加以详细计算定理的结论得证。

5. 码字结构

根据前面分析,我们给出最大二维的直接构造法。

一个最大二维的任意码字X满足,所以的码字中舍掉的码字,剩余的码字既是最大二维的所有码字。既有

定理2:设n是任意正整数,一个最大二维的码字结构如下:

时,

1)

2)

3),互不相同且

时,

1)

2)

3),互不相同且

时,

1)

2)

3),互不相同且

定理3 设n是任意正整数,一个最大二维的码字结构如下:

时,

1)

2)

3)互不相同且

时,

1)

2)

3)互不相同且

时,

1)

2)

3)互不相同且

时,

1)

2)

3)互不相同且

时,

1)

2)

3)互不相同且

时,

1)

2)

3)互不相同且

本文用组合计数和代数方法,对任意正整数n,m和,确定了二维光正交码的最大容量,并给出相应码字结构。希望我们的结果对权重为3的二维光正交码最大容量和码字构造问题的研究的完善有一定的参考价值。

基金项目

本文得到国家自然科学基金项目(11401326、11271042和11601137);内蒙古自然科学基金项目(2015MS0125、2015BS0103和NJZC16049);内蒙古自治区高等学校“青年科技英才支持计划”(NJYT-17-B12),内蒙古师范大学科研启动基金(2013YJRC026)的支持。

NOTES

*通讯作者。

参考文献

[1] Chung, F.R.K., Salehi, J.A. and Wei, V.K. (1989) Optical Orthogonal Codes: Design, Analysis and Applications. IEEE Transactions on Information Theory, 35, 595-604.
https://doi.org/10.1109/18.30982
[2] Feng, T., Wang, L., Wang, X. and Zhao, Y. (2017) Optimal Two Dimensional Optical Orthogonal Codes with the Best Cross-Correlation Contraint. Journal of Combinatorial Designs, 25, 1-32.
https://doi.org/10.1002/jcd.21554
[3] Momihara, K. and Buratti, M. (2009) Bounds and Constructions of Optimal Optical Orthogonal Codes. IEEE Transactions on Information Theory, 55, 514-523.
https://doi.org/10.1109/TIT.2008.2009852
[4] Huang, Y. and Chang, Y. (2012) Two Classes of Optimal Two-Dimensional OOCs. Designs, Codes and Cryptography, 63, 357-363.
https://doi.org/10.1007/s10623-011-9560-7
[5] Wang, J., Shan, X. and Yin, J. (2010) On Constructions for Optimal Two-Dimensional Optical Orthogonal Codes. Designs Codes Cryptography, 54, 43-60.
https://doi.org/10.1007/s10623-009-9308-9
[6] Wang, X., Chang, Y. and Feng, T. (2013) Optimal 2-D -Optical Orthogonal Codes. IEEE Transactions on Information Theory, 59, 710-725.
https://doi.org/10.1109/TIT.2012.2214025