|
[1]
|
Sluchanko, N.N. (2018) Association of Multiple Phosphorylated Proteins with the 14-3-3 Regulatory Hubs: Problems and Perspectives. Journal of Molecular Biology, 430, 20-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Skwarczynska, M. and Ottmann, C. (2015) Protein-Protein Inter-actions as Drug Targets. Future Medicinal Chemistry, 7, 2195-2219. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Andrei, S.A., Sijbesma, E., Hann, M., Davis, J., O’Mahony, G., Perry, M.W.D., et al. (2017) Stabilization of Protein-Protein Interactions in Drug Discovery. Expert Opinion on Drug Dis-covery, 12, 925-940. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wells, J.A. and McClendon, C.L. (2007) Reaching for High-Hanging Fruit in Drug Discovery at Protein-Protein Interfaces. Nature, 450, 1001-1009. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wu, H., Ge, J.Y. and Yao, S.Q. (2010) Microarray-Assisted High-Throughput Identification of a Cell-Permeable Small-Molecule Binder of 14-3-3 Proteins. Angewandte Chemie International Edition, 49, 6528-6532. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kaiser, M. and Ottmann, C. (2010) The First Small-Molecule Inhibitor of 14-3-3s: Modulating the Master Regulator. ChemBioChem, 11, 2085-2087. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Aitken, A., Howell, S., Jones, D., Madrazo, J. and Patel, Y. (1995) 14-3-3 Alpha and Delta Are the Phosphorylated Forms of Raf-Activating 14-3-3 Beta and Zeta. In Vivo Stoichiometric Phosphorylation in Brain at a Ser-Pro-Glu-Lys Motif. The Journal of Biological Chemistry, 270, 5706-5709. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Aghazadeh, Y. and Papadopoulos, V. (2016) The Role of the 14-3-3 Protein Family in Health, Disease, and Drug Development. Drug Discovery Today, 21, 278-287. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Shimada, T., Fournier, A.E. and Yamagata, K. (2013) Neuroprotective Function of 14-3-3 Proteins in Neurodegeneration. BioMed Research International, 2013, Article ID: 564534. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yaffe, M.B., Rittinger, K., Volinia, S., Caron, P.R., Aitken, A., Leffers, H., et al. (1997) The Structural Basis for 14-3-3: Phosphopeptide Binding Specificity. Cell, 91, 961-971. [Google Scholar] [CrossRef]
|
|
[11]
|
Coblitz, B., Shikano, S., Wu, M., Gabelli, S.B., Cockrell, L.M., Spieker, M., et al. (2005) C-Terminal Recognition by 14-3-3 Proteins for Surface Expression of Membrane Re-ceptors. The Journal of Biological Chemistry, 280, 36263-36272. [Google Scholar] [CrossRef]
|
|
[12]
|
Ganguly, S., Weller, J.L., Ho, A., Chemineau, P., Malpaux, B. and Klein, D.C. (2005) Melatonin Synthesis: 14-3-3-Dependent Activation and Inhibition of Arylalkylamine N-Acetyltransferase Mediated by Phosphoserine-205. Proceedings of the National Academy of Sciences of the United States of America, 102, 1222-1227. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ottmann, C., Yasmin, L., Weyand, M., Veesenmeyer, J.L., Diaz, M.H., Palmer, R.H., et al. (2007) Phosphorylation-Independent Interaction between 14-3-3 and Exoenzyme S: From Structure to Pathogenesis. The EMBO Journal, 26, 902-913. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Karlberg, T., Hornyak, P., Pinto, A.F., Milanova, S., Ebrahimi, M., Lindberg, M., et al. (2018) 14-3-3 Proteins Activate Pseudomonas Exotoxins-S and -T by Chaperoning a Hydrophobic Surface. Nature Communications, 9, 11. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Khorrami, A., Bagheri, M.S., Tavallaei, M. and Gharechahi, J. (2017) The Functional Significance of 14-3-3 Proteins in Cancer: Focus on Lung Cancer. Hormone Molecular Biology and Clinical Investigation, 32, 17. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kaplan, A., Ottmann, C. and Fournier, A.E. (2017) 14-3-3 Adaptor Protein-Protein Interactions as Therapeutic Targets for CNS Diseases. Pharmacological Research, 125, 114-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Cornell, B. and Toyo-Oka, K. (2017) 14-3-3 Proteins in Brain Development: Neurogenesis, Neuronal Migration and Neuromorphogenesis. Frontiers in Molecular Neuroscience, 10, 17. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wilker, E. and Yaffe, M.B. (2004) 14-3-3 Proteins—A Focus on Cancer and Human Disease. Journal of Molecular and Cellular Cardiology, 37, 633-642. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Sluchanko, N.N. and Gusev, N.B. (2017) Moonlighting Chap-erone-Like Activity of the Universal Regulatory 14-3-3 Proteins. The FEBS Journal, 284, 1279-1295. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Obsilova, V., Silhan, J., Boura, E., Teisinger, J. and Obsil, T. (2008) 14-3-3 Proteins: A Family of Versatile Molecular Regulators. Physiological Research, 57, S11-S21.
|
|
[21]
|
Oecking, C., Eckerskorn, C. and Weiler, E.W. (1994) The Fusicoccin Receptor of Plants Is a Member of the 14-3-3-Superfamily of Eukaryotic Regulatory Proteins. FEBS Letters, 352, 163-166. [Google Scholar] [CrossRef]
|
|
[22]
|
Wurtele, M., Jelich-Ottmann, C., Wittinghofer, A. and Oecking, C. (2003) Structural View of a Fungal Toxin Acting on a 14-3-3 Regulatory Complex. The EMBO Journal, 22, 987-994. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ottmann, C., Marco, S., Jaspert, N., Marcon, C., Schauer, N., Weyand, M., et al. (2007) Structure of a 14-3-3 Coordinated Hexamer of the Plant Plasma Membrane H+-ATPase by Combining X-Ray Crystallography and Electron Cryomicroscopy. Molecular Cell, 25, 427-440. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Rose, R., Erdmann, S., Bovens, S., Wolf, A., Rose, M., Hennig, S., et al. (2010) Identification and Structure of Small-Molecule Stabilizers of 14-3-3 Protein- Protein Interactions. Angewandte Chemie International Edition, 49, 4129-4132. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ottmann, C., Weyand, M., Sassa, T., Inoue, T., Kato, N., Wittinghofer, A., et al. (2009) A Structural Rationale for Selective Sta-bilization of Anti-Tumor Interactions of 14-3-3 Proteins by Cotylenin A. Journal of Molecular Biology, 386, 913-919. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Corradi, V., Mancini, M., Santucci, M.A., Carlomagno, T., Sanfelice, D., Mori, M., et al. (2011) Computational Techniques Are Valuable Tools for the Discovery of Protein-Protein Interaction Inhibitors: The 14-3-3 Sigma Case. Bioorganic & Medicinal Chemistry Letters, 21, 6867-6871. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hartman, A.M. and Hirsch, A.K.H. (2017) Molecular Insight into Specific 14-3-3 Modulators: Inhibitors and Stabilisers of Protein-Protein Interactions of 14-3-3. European Journal of Medicinal Chemistry, 136, 573-584. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Thiel, P., Roglin, L., Meissner, N., Hennig, S., Kohlbacher, O. and Ottmann, C. (2013) Virtual Screening and Experimental Validation Reveal Novel Small-Molecule Inhibitors of 14-3-3 Protein-Protein Interactions. Chemical Communications, 49, 8468-8470. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Richter, A., Rose, R., Hedberg, C., Waldmann, H. and Ottmann, C. (2012) An Optimised Small-Molecule Stabiliser of the 14-3-3-pma2 Protein-Protein Interaction. Chemistry: A European Journal, 18, 6520-6527. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Waterman, M.J.F., Stavridi, E.S., Waterman, J.L.F. and Halazonetis, T.D. (1998) ATM-Dependent Activation of p53 Involves Dephosphorylation and Association with 14-3-3 Proteins. Nature Genetics, 19, 175-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chen, C.Y.C. (2011) TCM Database@Taiwan: The World’s Largest Traditional Chinese Medicine Database for Drug Screening in Silico. PLoS ONE, 6, 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wang, W., Wan, M.H., Liao, D.J., Peng, G.L., Xu, X., Yin, W.Q., et al. (2017) Identification of Potent Chloride Intracellular Channel Protein 1 Inhibitors from Traditional Chinese Medicine through Structure-Based Virtual Screening and Molecular Dynamics Analysis. BioMed Research International, 2017, Article ID: 4751780. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhang, Q., Gan, Q., Liu, X., Chen, X. and Feng, C.G. (2018) Virtual Screening of Protein Tyrosine Phosphatase 1b Inhibitors Based on Natural Products. Progress in Biochemistry and Bi-ophysics, 45, 442-452.
|
|
[34]
|
Benzinger, A., Popowicz, G.M., Joy, J.K., Majumdar, S., Holak, T.A. and Hermeking, H. (2005) The Crystal Structure of the Non-Liganded 14-3-3 Sigma Protein: Insights into Determinants of Isoform Specific Ligand Binding and Dimerization. Cell Research, 15, 219-227. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sanner, M.F. (1999) Python: A Programming Language for Software Integration and Development. Journal of Molecular Graphics, 17, 57-61.
|
|
[36]
|
Trott, O. and Olson, A.J. (2010) Autodock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry, 31, 455-461.
|
|
[37]
|
Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. and Klein, M.L. (1983) Comparison of Simple Potential Functions for Simulating Liquid Water. The Journal of Chemical Physics, 79, 926-935. [Google Scholar] [CrossRef]
|
|
[38]
|
Maier, J.A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K.E. and Simmerling, C. (2015) ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. Journal of Chemical Theory and Computation, 11, 3696-3713. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wang, J.M., Wolf, R.M., Caldwell, J.W., Kollman, P.A. and Case, D.A. (2004) Development and Testing of a General Amber Force Field. Journal of Computational Chemistry, 25, 1157-1174. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al. (2009) Gaussian 09 Rev. A01. Wallingford.
|
|
[41]
|
Becke, A.D. (1988) Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38, 3098-3100. [Google Scholar] [CrossRef]
|
|
[42]
|
Lee, C.T., Yang, W.T. and Parr, R.G. (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B, 37, 785-789. [Google Scholar] [CrossRef]
|
|
[43]
|
Wang, J.M., Wang, W., Kollman, P.A. and Case, D.A. (2006) Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations. Journal of Molecular Graphics, 25, 247-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Darden, T., York, D. and Pedersen, L. (1993) Particle Mesh Ewald: An N.log(N) Method for Ewald Sums in Large Systems. The Journal of Chemical Physics, 98, 10089-10092. [Google Scholar] [CrossRef]
|
|
[45]
|
Ryckaert, J.P., Ciccotti, G. and Berendsen, H.J.C. (1977) Numerical Inte-gration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. Journal of Computational Physics, 23, 327-341. [Google Scholar] [CrossRef]
|
|
[46]
|
Case, D.A., Cheatham, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Walker, R.C., Zhang, W., Merz, K.M., Roberts, B., Hayik, S., Roitberg, A., Seabra, G., Swails, J., et al. (2012) AMBER 12. University of California, San Francisco.
|
|
[47]
|
Srinivasan, J., Cheatham, T.E., Cieplak, P., Kollman, P.A. and Case, D.A. (1998) Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate-DNA Helices. Journal of the American Chemical Society, 120, 9401-9409. [Google Scholar] [CrossRef]
|
|
[48]
|
Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S.H., Chong, L., et al. (2000) Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Accounts of Chemical Research, 33, 889-897. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Onufriev, A., Bashford, D. and Case, D.A. (2000) Modification of the Generalized Born Model Suitable for Macromolecules. The Journal of Physical Chemistry B, 104, 3712-3720. [Google Scholar] [CrossRef]
|
|
[50]
|
Rizzo, R.C., Toba, S. and Kuntz, I.D. (2004) A Molecular Basis for the Selectivity of Thiadiazole Urea Inhibitors with Stromelysin-1 and Gelatinase-A from Generalized Born Molecular Dynamics Simulations. Journal of Medicinal Chemistry, 47, 3065-3074. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Yang, C.Y., Sun, H.Y., Chen, J.Y., Nikolovska-Coleska, Z. and Wang, S.M. (2009) Importance of Ligand Reorganization Free Energy in Protein-Ligand Binding-Affinity Prediction. Journal of the American Chemical Society, 131, 13709-13721. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Hou, T.J., Wang, J.M., Li, Y.Y. and Wang, W. (2011) Assessing the Performance of the Molecular Mechanics/Poisson Boltzmann Surface Area and Molecular Mechanics/Generalized Born Surface Area Methods. II. The Accuracy of Ranking Poses Generated from Docking. Journal of Computational Chemistry, 32, 866-877. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Sanner, M.F., Olson, A.J. and Spehner, J.C. (1996) Reduced Surface: An Efficient Way to Compute Molecular Surfaces. Biopolymers, 38, 305-320. [Google Scholar] [CrossRef]
|
|
[54]
|
Case, D.A. (1994) Normal Mode Analysis of Protein Dynamics. Current Opinion in Structural Biology, 4, 285-290. [Google Scholar] [CrossRef]
|