|
[1]
|
董锁花, 王芳, 包金风. DNA甲基化对细胞周期的调控[J]. 中国细胞生物学学报, 2018, 40(12): 2083-2089.
|
|
[2]
|
张蓓蓓, 商玮, 蔡辉. 骨质疏松的表观遗传学调控[J]. 中华骨质疏松和骨矿盐疾病杂志, 2017, 5(10): 33.
|
|
[3]
|
Kyung, H. and Park, M. (2017) Epigenetic Regulation of Bone Cells. Connective Tissue Research, 58, 76-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Tanner, C.G., Benjamin, J. and Wildman, A.J. (2018) Epi-genetic Remodeling and Modification to Preserve Skeletogenesis in Vivo. Connective Tissue Research, 59, 52-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sharifi, Z., Daniela, G., Kenjiro, A., et al. (2017) DNA Methylation Regulates Discrimination of Enhancers from Promoters through a H3K4me1-H3K4me3 Seesaw Mechanism. BMC Genomics, 18, 964. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
胡晓青, 张辛, 代岭辉, 朱敬先, 陈文庆, 傅欣, 敖英芳. 骨髓间充质干细胞成骨分化过程中Runx2的表观遗传学修饰[J]. 中国生物化学与分子生物学报, 2014, 30(2): 150-155. [Google Scholar] [CrossRef]
|
|
[7]
|
Zhang, R.P., Shao, J.Z. and Xiang, L.X. (2011) GADD45A Protein Plays an Essential Role in Active DNA Demethylation during Terminal Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Journal of Biological Chemistry, 286, 41083-41094. [Google Scholar] [CrossRef]
|
|
[8]
|
Jesus, D. and Carolina, S. (2011) DNA Methylation Contributes to the Regulation of Sclerostin Expression in Human Osteocytes. Journal of Bone and Mineral Research, 27, 926-937. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Arnsdorf, E.J., Tummala, P., Castillo, A.B., et al. (2010) The Epigenetic Mechanism of Mechanically Induced Osteogenic Differentiation. Journal of Biomechanics, 43, 2881-2886. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hupkes, M., Someren, E.P., Middelkamp, S.H., et al. (2011) DNA Methylation Restricts Spontaneous Multi-Lineage Differentiation. Biochimica et Biophysica Acta, 1813, 839-849. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lee, J.Y., Lee, Y.M., Kim, M.J., Choi, J.Y., et al. (2006) Methylation of the Mouse DIx5 and Osx Gene Promoters Regulation Cell Type-Specific Gene Expression. Molecular Cell, 22, 182-188.
|
|
[12]
|
王维, 孟智启, 石放雄. 组蛋自修饰及其生物学效应[J]. 遗传, 2012, 34(7): 810-818. [Google Scholar] [CrossRef]
|
|
[13]
|
Sun, J.Y. and Kyunghwan, K. (2018) Histone Tail Cleavage as a Novel Epigenetic Regulatory Mechanism for Gene Expression. BMB Reports, 5, 211-218. [Google Scholar] [CrossRef]
|
|
[14]
|
Hesse, E., Saito, H., Kiviranta, R., et al. (2010) Zfp521 Controls Bone Mass by HDAC3-Dependent Attenuation of Runx2 Activity. The Journal of Cell Biology, 191, 1271-1283. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Fang, S., Deng, Y., Gu, P. and Fan, X. (2015) MicroRNAs Regulate Bone Development and Regeneration. International Journal of molecular Sciences, 16, 8227-8253. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Pepin, G. and Gantier, M.P. (2016) MicroRNA Decay: Refining microRNA Regulatory Activity. MicroRNA, 5, 167-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Liu, X., Fortin, K. and Mourelatos, Z. (2008) MicroRNAs: Biogenesis and Molecular Functions. Brain Pathology, 18, 113-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Aguilera, O., Fernandez, A.F., Munoz, A. and Fraga, M.F. (2010) Epigenetics and Environment: A Complex Relationship. Journal of Applied Physiology, 109, 243-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, H., Xie, H., Liu, W., et al. (2009) A Novel microRNA Targeting HDAC5 Regulates Osteoblast Differentiation in Mice and Contributes to Primary Osteoporosis in Humans. Journal of Clinical Investigation, 119, 3666-3677. [Google Scholar] [CrossRef]
|
|
[20]
|
Delgado-Calle, J. and Riancho, J.A. (2012) The Role of DNA Methylation in Common Skeletal Disorders. Biology (Basel), 1, 698-713. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Harish, D. and Kaare, M. (2015) The Influence of DNA Methylation on Bone Cells. Journal of Clinical Investigation, 6, 384-392. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
杨士珍, 黄永震, 贺花, 雷初朝, 陈宏. 动物DNA甲基化的研究现状与应用前景[J]. 中国牛业科学, 2016, 42(5): 51-54.
|
|
[23]
|
Zhang, X.H., Geng, G.L., Su, B., et al. (2016) MicroRNA-338-3p Inhibits Glucocorticoid-Induced Osteoclast Formation through RANKL Targeting. Genetics and Molecular Research, 15, gmr.15037674. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Nugent, M. (2017) MicroDNAs and Fracture Healing. Calcified Tissue International, 10, 355-361. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Taipaleenmaki, H. (2018) Regulation of Bone Metabolism by microRNAs. Current Osteoporosis Reports, 16, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Valenti, M.T., Dalle, C.L. and Mottes, M. (2018) Role of mi-croRNAs in Progenitor Cell Commitment and Osteogenic Differentiation in Health and Disease. Molecular Medicine Reports, 1, 2441-2449. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
姚睿, 范志朋. 组蛋白去甲基化酶KDM4B促进根尖牙乳头干细胞中成骨和成牙本质分化[J]. 北京口腔医学, 2013, 21(4): 181-184.
|
|
[28]
|
Seeliger, C., Karpinski, K., Haug, A.T., et al. (2014) Five Freely Circulating miRNAs and Bone Tissue miRNAs Are Associated with Osteoporotic Fractures. Journal of Bone and Mineral Research, 29, 1718-1728. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Xaver, F., Christian, M. and Patrick, H. (2018) Bone-Related Circulating MicroRNAs miR-29b-3p, miR550a-3p, and miR-324-3p and Their Association to Bone Microstructure and Histomorphometry. Scientific Reports, 8, Article No. 4867. [Google Scholar] [CrossRef] [PubMed]
|