|
[1]
|
Heinemeyer, A., Hartley, I.P., Evans, S.P., De la Fuente, J.A.C. and Ineson, P. (2007) Forest Soil CO2 Flux: Uncovering the Contri-bution and Environmental Responses of Ectomycorrhizas. Global Change Biology, 13, 1786-1797. [Google Scholar] [CrossRef]
|
|
[2]
|
Chapin, F.S., McFarland, J., McGuire, A.D., Euskirchen, E.S., Ruess, R.W. and Kielland, K. (2009) The Changing Global Carbon Cycle: Linking Plant-Soil Carbon Dynamics to Global Consequences. Journal of Ecology, 97, 840-850. [Google Scholar] [CrossRef]
|
|
[3]
|
Metz, B. (2001) Climate Change 2001: Mitigation: Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, England.
|
|
[4]
|
曹明奎, 李克让. 陆地生态系统与气候相互作用的研究进展[J]. 地球科学进展, 2000, 15(4): 446-452.
|
|
[5]
|
李克让. 土地利用变化和温室气体净排放与陆地生态系统碳循环[M]. 北京: 气象出版社, 2002.
|
|
[6]
|
Gatti, L.V., Gloor, M., Miller, J.B., Doughty, C.E., Malhi, Y., Domingues, L.G., Basso, L.S., Martinewski, A., Correia, C.S.C., Borges, V.F., Freitas, S., Braz, R., Anderson, L.O., Rocha, H., Grace, J., Phillips, O.L. and Lloyd, J. (2014) Drought Sensitivity of Amazonian Carbon Balance Revealed by Atmospheric Measurements. Nature, 506, 76-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Goodrick, I., Nelson, P.N., Banabas, M., Wurster, C.M. and Bird, M.I. (2015) Soil Carbon Balance Following Conversion of Grassland to Oil Palm. Global Change Biology Bioenergy, 7, 263-272. [Google Scholar] [CrossRef]
|
|
[8]
|
Schlesinger, W.H. (1990) Evidence from Chronosequence Studies for a Low Car-bon-Storage Potential of Soils. Nature, 348, 232-234. [Google Scholar] [CrossRef]
|
|
[9]
|
Schweinsberg-Mickan, M.S.Z., Jörgensen, R.G. and Müller, T. (2012) Rhizodeposition: Its Contribution to Microbial Growth and Carbon and Nitrogen Turnover within the Rhizosphere. Journal of Plant Nutrition and Soil Science, 175, 750-760. [Google Scholar] [CrossRef]
|
|
[10]
|
Carrillo, Y., Dijkstra, F.A., Pendall, E., LeCain, D. and Tucker, C. (2014) Plant Rhizosphere Influence on Microbial C Metabolism: The Role of Elevated CO2, N Availability and Root Stoichiometry. Biogeochemistry, 117, 229-240. [Google Scholar] [CrossRef]
|
|
[11]
|
Van Bel, A.J.E. (2003) The Phloem, A Miracle of Ingenuity. Plant, Cell & Environment, 26, 125-149. [Google Scholar] [CrossRef]
|
|
[12]
|
Jones, D. and Darrah, P. (1994) Role of Root Derived Organic Acids in the Mobilization of Nutrients from the Rhizosphere. Plant and Soil, 166, 247-257. [Google Scholar] [CrossRef]
|
|
[13]
|
Jones, D.L., Nguyen, C. and Finlay, R.D. (2009) Carbon Flow in the Rhizosphere: Carbon Trading at the Soil-Root interface. Plant and Soil, 321, 5-33. [Google Scholar] [CrossRef]
|
|
[14]
|
Watanabe, A., Machida, N., Takahashi, K., Kitamura, S. and Kimura, M. (2004) Flow of Photosynthesized Carbon from Rice Plants into the Paddy Soil Ecosystem at Different Stages of Rice Growth. Plant and Soil, 258, 151-160. [Google Scholar] [CrossRef]
|
|
[15]
|
Jiang, L.L., Han, X.G., Dong, N., Wang, Y.F. and Kardol, P. (2011) Plant Species Effects on Soil Carbon and Nitrogen Dynamics in a Temperate Steppe of Northern China. Plant and Soil, 346, 331-347. [Google Scholar] [CrossRef]
|
|
[16]
|
Cong, W.F., van Ruijven, J., Mommer, L., De Deyn, G.B., Berendse, F. and Hoffland, E. (2014) Plant Species Richness Promotes Soil Carbon and Nitrogen Stocks in Grasslands without Legumes. Journal of Ecology, 102, 1163-1170. [Google Scholar] [CrossRef]
|
|
[17]
|
Wiehe, W. and Höflich, G. (1995) Survival of Plant Growth Promoting Rhizosphere Bacteria in the Rhizosphere of Different Crops and Migration to Non-Inoculated Plants under Field Conditions in North-East Germany. Microbiological Research, 150, 201-206. [Google Scholar] [CrossRef]
|
|
[18]
|
Kuzyakov, Y. (2006) Sources of CO2 Efflux from Soil and Review of Partitioning Methods. Soil Biology and Biochemistry, 38, 425-448. [Google Scholar] [CrossRef]
|
|
[19]
|
Cheng, W.X., Zhang, Q.L., Coleman, D.C., Carroll, C.R. and Hoffman, C.A. (1996) Is Available Carbon Limiting Microbial Respiration in the Rhizosphere? Soil Biology & Biochemistry, 28, 1283-1288. [Google Scholar] [CrossRef]
|
|
[20]
|
Kuzyakov, Y. and Cheng, W. (2001) Photosynthesis Controls of Rhizosphere Respiration and Organic Matter Decomposition. Soil Biology and Biochemistry, 33, 1915-1925. [Google Scholar] [CrossRef]
|
|
[21]
|
Kuzyakov, Y. (2002) Review: Factors Affecting Rhizosphere Priming Effects. Journal of Plant Nutrition and Soil Science, 165, 382-396.
|
|
[22]
|
Staddon, P.L., Ramsey, C.B., Ostle, N., Ineson, P. and Fitter, A.H. (2003) Rapid Turnover of Hyphae of Mycorrhizal Fungi Determined by AMS Microanalysis of 14C. Science, 300, 1138-1140. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ostle, N., Whiteley, A.S., Bailey, M.J., Sleep, D., Ineson, P. and Manefield, M. (2003) Active Microbial RNA Turnover in a Grassland Soil Estimated Using a 13CO2 Spike. Soil Biology and Biochemistry, 35, 877-885. [Google Scholar] [CrossRef]
|
|
[24]
|
Hunt, M.A., Battaglia, M., Davidson, N.J. and Unwin, G.L. (2006) Competition between Plantation Eucalyptus nitens and Acacia dealbata Weeds in Northeastern Tasmania. Forest Ecology and Management, 233, 260-274. [Google Scholar] [CrossRef]
|
|
[25]
|
Berger, U., Piou, C., Schiffers, K. and Grimm, V. (2008) Competition among Plants: Concepts, Individual-Based Modelling Approaches, and a Proposal for a Future Research Strategy. Perspectives in Plant Ecology, Evolution and Systematics, 9, 121-135. [Google Scholar] [CrossRef]
|
|
[26]
|
Ewanchuk, P.J. and Bertness, M.D. (2004) Structure and Organization of a Northern New England Salt Marsh Plant Community. Journal of Ecology, 92, 72-85. [Google Scholar] [CrossRef]
|
|
[27]
|
李博, 陈家宽, A.R. 沃金森. 植物竞争研究进展[J]. 植物学通报, 1998, 15(4): 18-29.
|
|
[28]
|
杜峰, 梁宗锁, 胡莉娟. 植物竞争研究综述[J]. 生态学杂志, 2004, 23(4): 157-163.
|
|
[29]
|
Keddy, P., Gaudet, C. and Fraser, L.H. (2000) Effects of Low and High Nutrients on the Competitive Hierarchy of 26 Shoreline Plants. Journal of Ecology, 88, 413-423. [Google Scholar] [CrossRef]
|
|
[30]
|
Aarssen, L.W. (1983) Ecological Combining Ability and Competitive Combining Ability in Plants: Toward a General Evolutionary Theory of Coexistence in Systems of Competition. The American Naturalist, 122, 707-731. [Google Scholar] [CrossRef]
|
|
[31]
|
Rees, M., Condit, R., Crawley, M., Pacala, S. and Tilman, D. (2001) Long-Term Studies of Vegetation Dynamics. Science, 293, 650-655. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Hooper, D.U. and Vitousek, P.M. (1997) The Effects of Plant Composition and Diversity on Ecosystem Processes. Science, 277, 1302-1305. [Google Scholar] [CrossRef]
|
|
[33]
|
Hooper, D.U. and Vitousek, P.M. (1998) Effects of Plant Composition and Diversity on Nutrient Cycling. Ecological Monographs, 68, 121-149. [Google Scholar] [CrossRef]
|
|
[34]
|
Dijkstra, F.A., Morgan, J.A., Blumenthal, D. and Follett, R.F. (2010) Water Limitation and Plant Inter-Specific Competition Reduce Rhizosphere-Induced C Decomposition and Plant N Uptake. Soil Biology & Biochemistry, 42, 1073-1082. [Google Scholar] [CrossRef]
|
|
[35]
|
Cheng, W. and Kuzyakov, Y. (2005) Root Effects on Soil Organic Matter Decomposition. In: Zobel, R.W. and Wright, S.F., Eds., Roots and Soil Management: Interactions between Roots and the Soil, ASA-SSSA, Madison, WI, 119-143.
|
|
[36]
|
Stephan, A., Meyer, A.H. and Schmid, B. (2000) Plant Diversity Affects Culturable Soil Bacteria in experimental grassland communities. Journal of Ecology, 88, 988-998. [Google Scholar] [CrossRef]
|
|
[37]
|
Fontaine, S., Mariotti, A. and Abbadie, L. (2003) The Priming Effect of Organic Matter: A Question of Microbial Competition? Soil Biology & Biochemistry, 35, 837-843. [Google Scholar] [CrossRef]
|
|
[38]
|
Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M. and Siemann, E. (1997) The Influence of Functional Diversity and Composition on Ecosystem Processes. Science, 277, 1300-1302. [Google Scholar] [CrossRef]
|
|
[39]
|
Fowler, N. (1986) The Role of Competition in Plant Communities in Arid and Semiarid Regions. Annual Review of Ecology and Systematics, 17, 89-110. [Google Scholar] [CrossRef]
|
|
[40]
|
Prach, K., Bartha, S., Pyšek, P., Joyce, C.B., van Diggelen, R. and Wiegleb, G. (2001) The Role of Spontaneous Vegetation Succession in Ecosystem Restoration: A Perspective. Applied Vegetation Science, 4, 111-114. [Google Scholar] [CrossRef]
|
|
[41]
|
Alday, J., Marrs, R. and Martínez-Ruiz, C. (2012) Soil and Vegetation Development during Early Succession on Restored Coal Wastes: A Six-Year Permanent Plot Study. Plant and Soil, 353, 305-320. [Google Scholar] [CrossRef]
|
|
[42]
|
Maxfield, P.J., Dildar, N., Hornibrook, E.R.C., Stott, A.W. and Evershed, R.P. (2012) Stable Isotope Switching (SIS): A New Stable Isotope Probing (SIP) Approach to Determine Carbon Flow in the Soil Food Web and Dynamics in Organic Matter Pools. Rapid Communications in Mass Spectrometry, 26, 997-1004. [Google Scholar] [CrossRef] [PubMed]
|