|
[1]
|
Siegel, R.L., Miller, K.D. and Jemal, A. (2018) Cancer Statistics, 2018. CA: A Cancer Journal for Clinicians, 68, 7-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Anderson, B., Yip, C., Smith, R., Shyyan, R., Sener, S., Eniu, A., et al. (2008) Guideline Implementation for Breast Healthcare in Low-Income and Middle Income Countries: Overview of the Breast Health Global Initiative Global Summit 2007. Cancer, 113, 2221-2243. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Han, S., Guo, Q. and Wang, T., et al. (2013) Prognostic Significance of Interactions between ER Alpha and ER Beta and Lymph Node Status in Breast Cancer Cases. Asian Pacific Journal of Cancer Prevention, 14, 6081-6084. [Google Scholar] [CrossRef]
|
|
[4]
|
Peng, J., Sengupta, S. and Jordan, V.C. (2009) Potential of Selective Estrogen Receptor Modulators as Treatments and Preventives of Breast Cancer. Anti-Cancer Agents in Me-dicinal Chemistry, 9, 481-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Brenton, J.D., Carey, L.A., Ahmed, A.A. and Caldas, C. (2005) Molecular Classification and Molecular Forecasting of Breast Cancer: Ready for Clinical Application? Journal of Clinical Oncology, 23, 7350-7360. [Google Scholar] [CrossRef]
|
|
[6]
|
Luo, H., Tu, G., Liu, Z. and Liu, M. (2015) Cancer-Associated Fibroblasts: A Multifaceted Driver of Breast Cancer Progression. Cancer Letters, 361, 155-163. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tchou, J., Kossenkov, A.V., Chang, L., Satija, C., Herlyn, M., Showe, L.C. and Pure, E. (2012) Human Breast Cancer-Associated Fibroblasts Exhibit Subtype Specific Gene Expres-sion Profiles. BMC Medical Genomics, 5, 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Bergamaschi, A., Tagliabue, E., Sorlie, T., Naume, B., Triulzi, T., Orlandi, R., Russnes, H.G., Nesland, J.M., Tammi, R., Auvinen, P., et al. (2008) Extracellular Matrix Signature Identi-fies Breast Cancer Subgroups with Different Clinical Outcome. The Journal of Pathology, 214, 357-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Quail, D.F. and Joyce, J.A. (2013) Microenvironmental Regulation of Tumor Progression and Metastasis. Nature Medicine, 19, 1423-1437. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Campbell, I., Qiu, W. and Haviv, I. (2011) Genetic Changes in Tumour Microenvironments. The Journal of Pathology, 223, 450-458. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Moinfar, F., Man, Y.G., Arnould, L., Bratthauer, G.L., Ratschek, M. and Tavassoli, F.A. (2000) Concurrent and Independent Genetic Alterations in the Stromal and Epithelial Cells of Mammary Carcinoma: Implications for Tumorigenesis. Cancer Research, 60, 2562-2566.
|
|
[12]
|
Gabbiani, G., Ryan, G.B. and Majne, G. (1971) Presence of Modified Fibroblasts in Granulation Tissue and Their Possible Role in Wound Contraction. Experientia, 27, 549-550. [Google Scholar] [CrossRef]
|
|
[13]
|
Hasebe, T., Tamura, N., Okada, N., Hojo, T., Akashi-tanaka, S., Shimizu, C., Tsuda, H., Shibata, T., Sasajima, Y., Iwasaki, M., et al. (2010) p53 Expression in Tumor-Stromal Fibroblasts Is Closely Associated with the Nodal Metastasis and Outcome of Patients with Invasive Ductal Carcinoma Who Received Neoadjuvant Therapy. Human Pathology, 41, 262-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Dvorak, H.F. (1986) Tumors: Wounds that Do Not Heal. Similarities between Tumor Stroma Generation and Wound Healing. The New England Journal of Medicine, 315, 1650-1659. [Google Scholar] [CrossRef]
|
|
[15]
|
Bhowmick, N.A., Neilson, E.G. and Moses, H.L. (2004) Stromal Fibroblasts in Cancer Initiation and Progression. Nature, 432, 332-337. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Bauer, M., SU, G., Casper, C., HE, R., Rehrauer, W. and Friedl, A. (2010) Heterogeneity of Gene Expression in Stromal Fibroblasts of Human Breast Carcinomas and Normal Breast. Oncogene, 29, 1732-1740. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hawsawi, N.M., Ghebeh, H., Hendrayani, S.F., Tulbah, A., Al-Eid, M., Al-Tweigeri, T., Ajarim, D., Alaiya, A., Dermime, S. and Aboussekhra, A. (2008) Breast Carcinoma—Associated Fi-broblasts and Their Counterparts Display Neoplastic-Specific Changes. Cancer Research, 68, 2717-2725. [Google Scholar] [CrossRef]
|
|
[18]
|
Mao, Y., Keller, E.T., Garfield, D.H., Shen, K. and Wang, J. (2013) Stromal Cells in Tumor Microenvironment and Breast Cancer. Cancer and Metastasis Reviews, 32, 303-315. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Pula, B., Jethon, A., Piotrowska, A., Gomulkiewicz, A., Owcza-rek, T., Calik, J., Wojnar, A., Witkiewicz,W., Rys, J., Ugorski, M., et al. (2011) Podoplanin Expression by Can-cer-Associated Fibroblasts Predicts Poor Outcome in Invasive Ductal Breast Carcinoma. Histopathology, 59, 1249-1260. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ronnov-Jessen, L., Petersen, O.W., Koteliansky, V.E. and Bissell, M.J. (1995) The Origin of the Myofibroblasts in Breast Cancer. Recapitulation of Tumor Environment in Culture Unravels Diversity and Implicates Converted Fibroblasts and Recruited Smooth Muscle Cells. Journal of Clinical Investigation, 95, 859-873. [Google Scholar] [CrossRef]
|
|
[21]
|
Kojima, Y., Acar, A., Eaton, E.N., Mellody, K.T., Scheel, C., Ben-Porath, I., Onder, T.T., Wang, Z.C., Richardson, A.L., Weinberg, R.A., et al. (2010) Autocrine TGF-Beta and Stromal Cell-Derived Factor-1 (SDF-1) Signaling Drives the Evolution of Tumor-Promoting Mammary Stromal Myofibroblasts. PNAS, 107, 20009-20014. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Omary, M.B., Lugea, A., Lowe, A.W. and Pandol, S.J. (2007) The Pancreatic Stellate Cell: A Star on the Rise in Pancreatic Diseases. Journal of Clinical Investigation, 117, 50-59. [Google Scholar] [CrossRef]
|
|
[23]
|
Yin, C., Evason, K.J., Asahina, K. and Stainier, D.Y. (2013) Hepatic Stellate Cells in Liver Development, Regeneration, and Cancer. Journal of Clinical Investigation, 123, 1902-1910. [Google Scholar] [CrossRef]
|
|
[24]
|
Barth, P.J., Ebrahimsade, S., Ramaswamy, A. and Moll, R. (2002) CD34+ Fibrocytes in Invasive Ductal Carcinoma, Ductal Carcinoma in Situ, and Benign Breast Lesions. Virchows Archiv, 440, 298-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Jung, Y., et al. (2013) Recruitment of Mesenchymal Stem Cells into Prostate Tumours Promotes Metastasis. Nature Communications, 4, Article No. 1795. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Mishra, P.J., et al. (2008) Carcinoma-Associated Fibroblast—Like Differentiation of Human Mesenchymal Stem Cells. Cancer Research, 68, 4331-4339. [Google Scholar] [CrossRef]
|
|
[27]
|
Zhu, Q., et al. (2014) The IL-6-STAT3 Axis Mediates a Reciprocal Crosstalk between Cancer-Derived Mesenchymal Stem Cells and Neutrophils to Synergistically Prompt Gastric Cancer Progression. Cell Death & Disease, 5, e1295. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Weber, C.E., et al. (2015) Osteopontin Mediates an MZF1-TGF-β1-Dependent Transformation of Mesenchymal Stem Cells into Cancer-Associated Fibroblasts in Breast Cancer. Oncogene, 34, 4821-4833. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Shi, Y., Du, L., Lin, L. and Wang, Y. (2017) Tumour-Associated Mesenchymal Stem/Stromal Cells: Emerging Therapeutic Targets. Nature Reviews Drug Discovery, 16, 35-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zeisberg, E.M., Potenta, S., Xie, L., Zeisberg, M. and Kalluri, R. (2007) Discovery of Endothelial to Mesenchymal Transition as a Source for Carcinoma-Associated Fibroblasts. Cancer Re-search, 67, 10123-10128. [Google Scholar] [CrossRef]
|
|
[31]
|
Kalluri, R. and Weinberg, R.A. (2009) The Basics of Epi-thelial-Mesenchymal Transition. Journal of Clinical Investigation, 119, 1420-1428. [Google Scholar] [CrossRef]
|
|
[32]
|
Massague, J. (2008) TGF-β in Cancer. Cell, 134, 215-230. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Trimmer, C., Sotgia, F., Whitaker-Menezes, D., Balliet, R.M., Eaton, G., Martinez-Outschoorn, U.E., Pavlides, S., Howell, A., Iozzo, R.V., Pestell, R.G., et al. (2011) Caveolin-1 and Mitochondrial SOD2 (MnSOD) Function as Tumor Suppressors in the Stromal Microenvironment: A New Genetically Tractable Model for Human Cancer-Associated Fibroblasts. Cancer Biology & Therapy, 11, 383-394. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Witkiewicz, A.K., Dasgupta, A., Sammons, S., Er, O., Potoczek, M.B., Guiles, F., Sotgia, F., Brody, J.R., Mitchell, E.P. and Lisanti, M.P. (2010) Loss of Stromal Caveolin-1 Expression Predicts Poor Clinical Outcome in Triple Negative and Basal-Like Breast Cancers. Cancer Biology & Therapy, 10, 135-143. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Witkiewicz, A.K., Dasgupta, A., Sotgia, F., Mercier, I., Pestell, R.G., Sabel, M., Kleer, C.G., Brody, J.R. and Lisanti, M.P. (2009) An Absence of Stromal Caveolin-1 Expres-sion Predicts Early Tumor Recurrence and Poor Clinical Outcome in Human Breast Cancers. The American Journal of Pathology, 174, 2023-2034. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Pula, B., Wojnar, A., Werynska, B., Ambicka, A., Kruczak, A., Witkiewicz, W., Ugorski, M., Podhorska-Okolow, M. and Dziegiel, P. (2013) Impact of Different Tumour Stroma As-sessment Methods Regarding Podoplanin Expression on Clinical Outcome in Patients with Invasive Ductal Breast Car-cinoma. Anticancer Research, 33, 1447-1455.
|
|
[37]
|
Schoppmann, S.F., Berghoff, A., Dinhof, C., Jakesz, R., Gnant, M., Dubsky, P., Jesch, B., Heinzl, H. and Birner, P. (2012) Podoplanin-Expressing Cancer-Associated Fibroblasts Are As-sociated with Poor Prognosis in Invasive Breast Cancer. Breast Cancer Research and Treatment, 134, 237-244. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Martinez-Outschoorn, U.E., Pavlides, S., Whitaker-Menezes, D., et al. (2010) Tumor Cells Induce the Cancer Associated Fibroblast Phenotype via Caveolin-1 Degradation: Implications for Breast Cancer and DCIS Therapy with Autophagy Inhibitors. Cell Cycle, 9, 2423-2433. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Orimo, A. and Weinberg, R.A. (2007) Heterogeneity of Stromal Fi-broblasts in Tumors. Cancer Biology & Therapy, 6, 618-619. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Qiao, A., Gu, F., Guo, X., et al. (2016) Breast Cancer-Associated Fibroblasts: Their Roles in Tumor Initiation, Progression and Clinical Applications. Frontiers of Medicine, 10, 33-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Paulsson, J., Sjoblom, T., Micke, P., Ponten, F., Landberg, G., Heldin, C.H., Bergh, J., Brennan, D.J., Jirstrom, K. and Ostman, A. (2009) Prognostic Significance of Stromal Platelet-Derived Growth Factor Beta-Receptor Expression in Human Breast Cancer. The American Journal of Pathology, 175, 334-341. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Pontiggia, O., Sampayo, R., Raffo, D., Motter, A., Xu, R., Bissell, M.J., Joffe, E.B. and Simian, M. (2012) The Tumor Microenvironment Modulates Tamoxifen Resistance in Breast Cancer: A Role for Soluble Stromal Factors and Fibronectin through β1 Integrin. Breast Cancer Research and Treatment, 133, 459-471. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Pavlides, S., Tsirigos, A., Vera, I., Flomenberg, N., Frank, P.G., Casimiro, M.C., Wang, C., Fortina, P., Addya, S., Pestell, R.G., et al. (2010) Loss of Stromal Caveolin-1 Leads to Ox-idative Stress, Mimics Hypoxia and Drives Inflammation in the Tumor Microenvironment, Conferring the “Reverse Warburg Effect”: A Transcriptional Informatics Analysis with Validation. Cell Cycle, 9, 2201-2219. [Google Scholar] [CrossRef] [PubMed]
|