|
[1]
|
Petrini, O., Sieber, T.N., Toti, L., et al. (1992) Ecology, Metabolite Production, and Substrate Utilization in Endophytic Fungi. Natural Toxins, 1, 185-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Christian, N., Sullivan, C., Visser, N.D. and Clay, K. (2016) Plant Host and Geographic Location Drive Endophyte Community Composition in the Face of Perturbation. Microbial Ecology, 72, 621-632. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Jia, M., Chen, L., Xin, H.L., et al. (2016) A Friendly Relationship between Endophytic Fungi and Medicinal Plants: A Systematic Review. Frontiers in Microbiology, 7, 906. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Virzi, G.M., Clementi, A., Battaglia, G.G. and Ronco, C. (2019) Multi-Omics Approach: New Potential Key Mechanisms Implicated in Cardiorenal Syndromes. Cardiorenal Medicine, 9, 201-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhai, X., Jia, M., Chen, L., et al. (2017) The Regulatory Mechanism of Fungal Elicitor-Induced Secondary Metabolite Biosynthesis in Medical Plants. Critical Reviews in Microbiology, 43, 238-261. [Google Scholar] [CrossRef]
|
|
[6]
|
Barbosa, E.G., Aabrjaile, F.F., Ramos, R.T., et al. (2014) Value of a Newly Sequenced Bacteria Genome. World Journal of Biological Chemistry, 5, 161-168.
|
|
[7]
|
Dinsdale, E.A., Edwards, R.A., Hall, D., et al. (2008) Functional Metagenomic Profiling of Nine Biomes. Nature, 452, 629-632. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Douriet-Gámez, N.R., Maldonado-Mendoza, I.E., Ibarra-Laclerre, E., Blom, J. and Calderón-Vázquez, C.L. (2018) Genomic Analysis of Bacillus sp. Strain B25, a Biocontrol Agent of Maize Pathogen Fusarium verticillioides. Current Microbiology, 75, 247-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Shen, L., Li, L.Y., Zhang, X.J., et al. (2015) A New Indole Derivative from Endophyte Myrothecium roridum IFB-E091 in Artemisia annua. Acta Pharmaceutica Sinica B, 50, 1305-1308.
|
|
[10]
|
Sessitsch, A., Hardoim, P., Doring, J., et al. (2012) Functional Characteristics of an Endophyte Community Colonizing Rice Roots as Revealed by Metagenomic Analysis. Molecular Plant-Microbe Interactions, 25, 28-36. [Google Scholar] [CrossRef]
|
|
[11]
|
Lopez, D., Ribeiro, S., Label, P., et al. (2018) Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors. Frontiers in Microbiology, 9, UNSP 276. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Maroli, A.S., Gaines, T.A., Foley, M.E., et al. (2018) Omics in Weed Science: A Perspective from Genomics, Transcriptomics, and Metabolomics Approaches. Weed Science, 66, 681-695. [Google Scholar] [CrossRef]
|
|
[13]
|
Yang, D.H., Liu, Q., Yang, M.J., et al. (2012) RNA-Seq Liver Transcriptome Analysis Reveals an Activated MHC-I Pathway and an Inhibited MHC-II Pathway at the Early Stage of Vaccine Immunization in Zebrafish. BMC Genomics, 13, 319. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Velculescu, V.E., Zhang, L., Zhou, W., et al. (1997) Characterization of the Yeast Transcriptome. Cell, 88, 243-251. [Google Scholar] [CrossRef]
|
|
[15]
|
Mellidou, I., Buts, K., Hatoum, D., et al. (2014) Transcriptomic Events Associated with Internal Browning of Apple during Postharvest Storage. BMC Plant Biology, 14, 328. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wang, K.L., Lin, Z., Zhang, H.Y., et al. (2019) Investigating Proteome and Transcriptome Response of Cryptococcus podzolicus Y3 to Citrinin and the Mechanisms Involved in Its Degradation. Food Chemistry, 283, 345-352. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Chan, J.P., Wong, H.T., Wright, J.R., et al. (2019) Using Bacterial Transcriptomics to Investigate Targets of Host-Bacterial Interactions in Caenorhabditis elegans. Scientific Reports, 9, Article No. 5545. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Espinoza, C., Degenkolbe, T., Caldana, C., et al. (2010) Interaction with Diurnal and Circadian Regulation Results in Dynamic Metabolic and Transcriptional Changes during Cold Acclimation in Arabidopsis. PLoS ONE, 5, e14101. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ho, C.-L., Tan, Y.-C., Yeoh, K.-A., et al. (2016) De novo Transcriptome Analyses of Host-Fungal Interactions in Oil Palm (Elaeis guineensis Jacq.). BMC Genomics, 17, 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zheng, W.-J., Ma, L., Zhao, J.-M., et al. (2013) Comparative Transcriptome Analysis of Two Rice Varieties in Response to Rice Stripe Virus and Small Brown Planthoppers during Early Interaction. PLoS ONE, 8, e82126. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liu, J.-G., Ning, C.-B., Li, B.-J., et al. (2019) Transcriptome Comparison between Prenatal and Postnatal Large White Livers Identifies Differences in the Expression Level of Genes Related to Metabolism and Postnatal Growth. Gene, 686, 92-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wu, Q., Ni, M., Wang, G.-S., et al. (2018) Omics for Understanding the Tolerant Mechanism of Trichoderma asperellum TJ01 to Organophosphorus Pesticide Dichlorvos. BMC Genomics, 19, 596. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Li, D., Song, X.-Y., Yue, Q.-X., et al. (2015) Proteomic and Bioinformatic Analyses of Possible Target Related Proteins of Gambogic Acid in Human Breast Carcinoma MDA-MB-231 Cells. Chinese Journal of Natural Medicines, 13, 41-51. [Google Scholar] [CrossRef]
|
|
[24]
|
Zhang, K., He, M.-Y., Su, D.-M., et al. (2019) Quantitative Proteomics Reveal Antidepressant Potential Protein Targets of Xiaochaihutang in Corticosterone Induced Model of Depression. Journal of Ethnopharmacology, 231, 438-445. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Du, N.-S., Shi, L., Yuan, Y.-H., et al. (2016) Proteomic Analysis Reveals the Positive Roles of the Plant-Growth-Promoting Rhizobacterium NSY50 in the Response of Cucumber Roots to Fusarium oxysporum f. sp cucumerinum Inoculation. Frontiers in Plant Science, 7, 1859. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Maserti, B.E., Del Carratore, R., Croce, C.M., et al. (2011) Comparative Analysis of Proteome Changes Induced by the Two Spotted Spider Mite Tetranychus urticae and Methyl Jasmonate in Citrus Leaves. Journal of Plant Physiology, 168, 392-402. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, M., Cheng, S.-T., Wang, H.-Y., et al. (2017) iTRAQ-Based Proteomic Analysis of Defence Responses Triggered by the Necrotrophic Pathogen Rhizoctonia solani in Cotton. Journal of Proteomics, 152, 226-235. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Xu, Q.-F., Ni, H.-P., Chen, Q.-Q., et al. (2013) Comparative Proteomic Analysis Reveals the Cross-Talk between the Responses Induced by H2O2 and by Long-Term Rice Black-Streaked Dwarf Virus Infection in Rice. PLoS ONE, 8, e81640. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Nicholson, J.K., Lindon, J.C. and Holmes, E. (1999) ‘Metabonomics’: Understanding the Metabolic Responses of Living Systems to Pathophysiological Stimuli via Multivariate Statistical Analysis of Biological NMR Spectroscopic Data. Xenobiotica, 29, 1181-1189. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Taylor, J., King, R.D., Altmann, T., et al. (2002) Application of Metabolomics to Plant Genotype Discrimination Using Statistics and Machine Learning. Bioinformatics, 18, S241-S248. [Google Scholar] [CrossRef]
|
|
[31]
|
Silva, M.R., Freitas, L.G., Souza, A.G., et al. (2019) Antioxidant Activity and Metabolomic Analysis of Cagaitas (Eugenia dysenterica) Using Paper Spray Mass Spectrometry. Journal of the Brazilian Chemical Society, 30, 1034-1044. [Google Scholar] [CrossRef]
|
|
[32]
|
Karahalil, B. (2016) Overview of Systems Biology and Omics Technologies. Current Medicinal Chemistry, 23, 4221-4230. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ramadan, A., Sabir, J.S., Alakilli, S.Y., et al. (2014) Metabolomic Response of Calotropis procera Growing in the Desert to Changes in Water Availability. PLoS ONE, 9, e87895. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
申国安, 段礼新, 漆小泉. 植物代谢组学数据分析和数据库[J]. 生命科学, 2015, 27(8): 995-999.
|
|
[35]
|
Zengin, G., Mahomoodally, F., Picot-Allain, C., et al. (2019) Metabolomic Profile of Salvia viridis L. Root Extracts Using HPLC-MS/MS Technique and Their Pharmacological Properties: A Comparative Study. Industrial Crops and Products, 131, 266-280. [Google Scholar] [CrossRef]
|
|
[36]
|
Doehlemann, G., Wahl, R., Horst, R.J., et al. (2008) Reprogramming a Maize Plant: Transcriptional and Metabolic Changes Induced by the Fungal Biotroph Ustilago maydis. The Plant Journal, 56, 181-195.
|
|
[37]
|
Abu-Nada, Y., Kushalappa, A.C., Marshall, W.D., Al-Mughrabi, K. and Murphy, A. (2007) Temporal Dynamics of Pathogenesis-Related Metabolites and Their Plausible Pathways of Induction in Potato Leaves Following Inoculation with Phytophthora infestans. European Journal of Plant Pathology, 118, 375-391. [Google Scholar] [CrossRef]
|
|
[38]
|
Bernardo, L., Carletti, P., Badeck, F.W., et al. (2019) Metabolomic Responses Triggered by Arbuscular Mycorrhiza Enhance Tolerance to Water stress in Wheat Cultivars. Plant Physiology and Biochemistry, 137, 203-212. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Hofmann, J., Elashry, A., Anwar, S., et al. (2010) Metabolic Profiling Reveals Local and Systemic Responses of Host Plants to Nematode Parasitism. The Plant Journal, 62, 1058-1071.
|
|
[40]
|
Michael, R., Joy, N., Sheila, S., et al. (2018) Clinical Cancer Genomic Profiling by Three-Platform Sequencing of Whole Genome, Whole Exome and Transcriptome. Nature Communications, 9, Article No. 3962. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Palazzotto, E. and Weber, T. (2018) Omics and Multi-Omics Approaches to Study the Biosynthesis of Secondary Metabolites in Microorganisms. Current Opinion in Microbiology, 45, 109-116. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ghaffqri, M.R., Ghabooli, M., Khatabi, B., et al. (2016) Metabolic and Transcriptional Response of Central Metabolism Affected by Root Endophytic Fungus Piriformospora indica under Salinity in Barley. Plant Molecular Biology, 90, 699-717. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Knief, C., Delmotte, N., Chaffron, S., et al. (2012) Metaproteogenomic Analysis of Microbial Communities in the Phyllosphere and Rhizosphere of Rice. The ISME Journal, 6, 1378-1390. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
李杰. 基于多组学数据和网络模型的复杂疾病靶标预测及药物基因组学研究[D]: [博士学位论文]. 上海: 华东理工大学, 2018.
|
|
[45]
|
刘林. 整合组学数据构建条件特异性代谢网络模型[D]: [硕士学位论文]. 上海: 上海交通大学, 2015.
|
|
[46]
|
潘玉云. 基于多种组学数据的疾病功能类扰动网络模型建立与分析[D]: [硕士学位论文]. 北京: 中国科学院北京基因组研究所, 2012.
|
|
[47]
|
Pujana, M.A., Han, J.D.J., Starita, L.M., et al. (2007) Network Modeling Links Breast Cancer Susceptibility and Centrosome Dysfunction. Nature Genetics, 39, 1338-1349. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Majeran, W., Friso, G., Ponnala, L., et al. (2010) Structural and Metabolic Transitions of C4 Leaf Development and Differentiation Defined by Microscopy and Quantitative Proteomics in Maize. Plant Cell, 22, 3509-3542. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Pick, T.R., Brautigam, A., Schluter, U., et al. (2011) Systems Analysis of a Maize Leaf Developmental Gradient Redefines the Current C4 Model and Provides Candidates for Regulation. Plant Cell, 23, 4208-4220. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Sanchez, B., Ruiz, L., Gueimonde, M. and Margolles, A. (2013) Omics for the Study of Probiotic Microorganisms. Food Research International, 54, 1061-1071. [Google Scholar] [CrossRef]
|