|
[1]
|
Hanessian, S. (1983) Total Synthesis of Natural Products. The Organic Chemistry Series Vol. 3.
|
|
[2]
|
Hollingsworth, R.I. and Wang, G. (2000) Toward a Carbohydrate-Based Chemistry: Progress in the Development of General-Purpose Chiral Synthons from Carbohydrates. Chemical Reviews, 100, 4267-4282. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Nicolaou, K.C. and Mitchell, H.J. (2001) Adventures in Carbohydrate Chemistry: New Synthetic Technologies, Chemical Synthesis, Molecular Design, and Chemical Biology. Angewandte Chemie International Edition, 40, 1576-1624. [Google Scholar] [CrossRef]
|
|
[4]
|
Han, Z., Achilonu, M.C., Kendrekar, P.S., Joubert, E., Ferreira, D., Bonnet, S.L. and van der Westhuizen, J.H. (2013) Concise and Scalable Synthesis of Aspalathin, a Powerful Plasma Sugar-Lowering Natural Product. Journal of Natural Products, 77, 583-588. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lee, D.Y., Zhang, W.Y. and Karnati, V.V.R. (2003) Total Synthesis of Puerarin, an Isoflavone C-Glycoside. Tetrahe-dron Letters, 44, 6857-6859. [Google Scholar] [CrossRef]
|
|
[6]
|
Wu, Z., Wei, G., Lian, G. and Yu, B. (2010) Synthesis of Mangiferin, Isomangiferin, and Homomangiferin. The Journal of Organic Chemistry, 75, 5725-5728. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Furuta, T., Nakayama, M., Suzuki, H., Tajimi, H., Inai, M., Nukaya, H. and Kan, T. (2009) Concise Synthesis of Chafurosides A and B. Organic Letters, 11, 2233-2236. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Futagami, S., Ohashi, Y., Imura, K., Hosoya, T., Ohmori, K., Matsumoto, T. and Suzuki, K. (2000) Total Synthesis of Ravidomycin: Revision of Absolute and Relative Stereochemistry. Tetrahedron Letters, 41, 1063-1067. [Google Scholar] [CrossRef]
|
|
[9]
|
Compain, P. and Martin, O.R. (2007) Iminosugars: From Synthesis to Therapeutic Applications. John Wiley & Sons, Hoboken. [Google Scholar] [CrossRef]
|
|
[10]
|
Compain, P., Chagnault, V. and Martin, O.R. (2009) Tactics and Strategies for the Synthesis of Iminosugar C-Glycosides: A Review. Tetrahedron: Asymmetry, 20, 672-711. [Google Scholar] [CrossRef]
|
|
[11]
|
dos Santos, R.G., et al. (2011) Fries-Type Reactions for the C-Glycosylation of Phenols. Current Organic Chemistry, 15, 128-148. [Google Scholar] [CrossRef]
|
|
[12]
|
Ishida, H., Wakimoto, T., Kitao, Y., Tanaka, S., Miyase, T. and Nukaya, H. (2009) Quantitation of Chafurosides A and B in Tea Leaves and Isolation of Prechafurosides A and B from Oolong Tea Leaves. Journal of Agricultural and Food Chemistry, 57, 6779-6786. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Misawa, K., Takahashi, Y. and Sato, S. (2013) First Synthesis of Saponarin, 6-C-and 7-O-Di-β-D-Glucosylapigenin. Chemical and Pharmaceutical Bulletin, 61, 776-780. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Guo, C., Hu, M., DeOrazio, R.J., Usyatinsky, A., Fitzpatrick, K., Zhang, Z. and Khmelnitsky, Y. (2014) The Design and Synthesis of Novel SGLT2 Inhibitors: C-Glycosides with Benzyltriazolopyridinone and Phenylhydantoin as the Aglycone Moieties. Bioorganic & Medicinal Chemistry, 22, 3414-3422. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Deshpande, P.P., Ellsworth, B.A., Buono, F.G., Pullockaran, A., Singh, J., Kissick, T.P. and Mueller, R.H. (2007) Re-markable β-1-C-arylglucosides: Stereoselective Reduction of Acetyl-Protected Methyl 1-C-aryl-glucosides without Acetoxy-Group Participation. The Journal of Organic Chemistry, 72, 9746-9749. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
MacDougall, J.M., Zhang, X.D., Polgar, W.E., Khroyan, T.V., Toll, L. and Cashman, J.R. (2005) Synthesis and in Vitro Biological Evaluation of a Carbon Glycoside Analogue of Morphine-6-Glucuronide. Bioorganic & Medicinal Chemistry Letters, 15, 1583-1586. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kanai, A., Kamino, T., Kuramochi, K. and Kobayashi, S. (2003) Synthetic Studies Directed toward the Assembly of the C-Glycoside Fragment of the Telomerase Inhibitor D8646-2-6. Organic Letters, 5, 2837-2839. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Chen, Z.H., Wang, R.W. and Qing, F.L. (2012) Synthesis and Biological Evaluation of SGLT2 Inhibitors: Gem-Difluoromethylenated Dapagliflozin Analogs. Tetrahedron Letters, 53, 2171-2176. [Google Scholar] [CrossRef]
|
|
[19]
|
Shirakawa, S. and Kobayashi, S. (2007) Surfactant-Type Brønsted Acid Catalyzed Dehydrative Nucleophilic Substitu-tions of Alcohols in Water. Organic Letters, 9, 311-314. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Misawa, K., Gunji, Y. and Sato, S. (2013) Concise Synthesis of Flavocommelin, 7-O-Methylapigenin 6-C-4’-O-bis-β-d-glucoside, a Component of the Blue Supramolecular Pigment from Commelina communis. Carbohydrate Research, 374, 8-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Rodrigues, F., Canac, Y. and Lubineau, A. (2000) A Convenient, One-Step, Synthesis of β-C-glycosidic Ketones in Aqueous Media. Chemical Communications, 20, 2049-2050. [Google Scholar] [CrossRef]
|
|
[22]
|
Hanessian, S. and Lou, B. (2000) Stereocontrolledglycosyl Transfer Reactions with Unprotected Glycosyl Donors. Chemical Reviews, 100, 4443-4464. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Toshima, K. (2006) Novel Glycosyl-ation Methods and Their Application to Natural Products Synthesis. Carbohydrate Research, 341, 1282-1297. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Cavezza, A., Boulle, C., Guéguiniat, A., Pichaud, P., Trouille, S., Ricard, L. and Dalko-Csiba, M. (2009) Synthesis of Pro-XylaneTM: A New Biologically Active C-Glycoside in Aqueous Media. Bioorganic & Medicinal Chemistry Letters, 19, 845-849. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bragnier, N. and Scherrmann, M.C. (2005) One-Step Synthesis of β-C-glycosidic Ketones in Aqueous Media: The Case of 2-Acetamido Sugars. Synthesis, 2005, 814-818. [Google Scholar] [CrossRef]
|
|
[26]
|
Graziani, A., Amer, H., Zamyatina, A., Hofinger, A. and Kosma, P. (2005) Synthesis of C-Glycosides Related to Glycero-β-D-Manno-Heptoses. Tetrahedron: Asymmetry, 16, 167-175. [Google Scholar] [CrossRef]
|
|
[27]
|
Pałasz, A., Kalinowska-Tłuścik, J. and Jabłoński, M. (2013) Application of 2, 4, 6-trioxo-pyrimidin-5-ylidene Alditols in the Synthesis of Pyrano [2, 3-d] Pyrimidines Containing a Sugar Moiety by Hetero-Diels-Alder Reactions and by Conjugate Michael Addition-Cyclizations. Tetrahedron, 69, 8216-8227. [Google Scholar] [CrossRef]
|
|
[28]
|
Riemann, I., Fessner, W.D., Papadopoulos, M.A. and Knorst, M. (2002) C-Glycosides by Aqueous Condensation of β-Dicarbonyl Compounds with Unprotected Sugars. Australian Journal of Chemistry, 55, 147-154. [Google Scholar] [CrossRef]
|
|
[29]
|
Sato, S., Nojiri, T. and Onodera, J.I. (2005) Studies on the Synthesis of Safflomin-A, a Yellow Pigment in Safflower Petals: Oxidation of 3-C-β-d-Glucopyranosyl-5-Methylphloroacetophenone. Carbohydrate Research, 340, 389-393. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hamagami, H., Kumazoe, M., Yamaguchi, Y., Fuse, S., Tachi-bana, H. and Tanaka, H. (2016) 6-Azido-6-deoxy-l-idose as a Hetero-Bifunctional Spacer for the Synthesis of Az-ido-Containing Chemical Probes. Chemistry: A European Journal, 22, 12884-12890. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Rawat, P., Kumar, M., Rahuja, N., Srivastava, D.S.L., Srivastava, A.K. and Maurya, R. (2011) Synthesis and Antihy-perglycemic Activity of Phenolic C-Glycosides. Bioorganic & Medicinal Chemistry Letters, 21, 228-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Sato, S., Akiya, T., Suzuki, T. and Onodera, J.I. (2004) Envi-ronmentally Friendly C-Glycosylation of Phloroacetophenone with Unprotected D-Glucose Using Scandium (III) Tri-fluoromethanesulfonate in Aqueous Media: Key Compounds for the Syntheses of Mono- and Di-C-Glucosylflavonoids. Carbohydrate Research, 339, 2611-2614. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Collet, S.C., Rémi, J.F., Cariou, C., Laı̈b, S., Guingant, A.Y., Vu, N.Q. and Dujardin, G. (2004) A Hetero Diels-Alder Approach to the Synthesis of the First Angucyclinone and Angucycline 5-Aza-Analogues. Tetrahedron Letters, 45, 4911-4915. [Google Scholar] [CrossRef]
|
|
[34]
|
Du, Y., Linhardt, R.J. and Vlahov, I.R. (1998) Recent Advances in Stereoselective C-Glycoside Synthesis. Tetrahedron, 54, 9913-9959. [Google Scholar] [CrossRef]
|
|
[35]
|
Lin, L., He, X.P., Xu, Q., Chen, G.R. and Xie, J. (2008) Synthesis of β-C-Glycopyranosyl-1, 4-Naphthoquinone Deriv-atives and Their Cytotoxic Activity. Carbohydrate Research, 343, 773-779. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
He, L., Zhang, Z.Y., Tanoh, M., Chen, G.R., Praly, J.P., Chry-sina, E.D. and Oikonomakos, N.G. (2007) In the Search of Glycogen Phosphorylase Inhibitors: Synthesis of C-D-Glycopyranosylbenzo (Hydro) Quinones-Inhibition of and Binding to Glycogen Phosphorylase in the Crystal. European Journal of Organic Chemistry, 2007, 596-606. [Google Scholar] [CrossRef]
|
|
[37]
|
Gervay, J. and McReynolds, K.D. (1999) Utilization of ELISA Technology to Measure Biological Activities of Carbohydrates Relevant in Disease States. Current Medicinal Chemistry, 6, 129-154.
|
|
[38]
|
Liu, Z., Byun, H.S. and Bittman, R. (2010) Synthesis of Immunostimulatory α-C-Galactosylceramide Glycolipids via Sonogashira Coupling, Asymmetric Epoxidation, and Trichloroacetimidate-Mediated Epoxide Opening. Organic Letters, 12, 2974-2977. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Levy, D.E. and Tang, C. (1995) The Chemistry of C-Glycosides. Pergamon Press, Oxford.
|
|
[40]
|
Postema, M.H.D. (1995) C-Glycoside Synthesis. CRC Press, Boca Raton.
|
|
[41]
|
Postema, M.H. (1992) Recent Developments in the Syn-thesis of C-Glycosides. Tetrahedron, 48, 8545-8599. [Google Scholar] [CrossRef]
|
|
[42]
|
Nicotra, F. (1997) Synthesis of C-Glycosides of Biological Interest. In: Driguez, H. and Thiem, J., Eds., Glycoscience Synthesis of Substrate Analogs and Mimetics, Springer, Berlin, Heidelberg, 55-83. [Google Scholar] [CrossRef]
|
|
[43]
|
Hosomi, A., Sakata, Y. and Sakurai, H. (1984) Highly Stereoselective C-Allylation of Glycopyranosides with Allylsilanes Catalyzed by Silyltriflate or Iodosilane. Tetrahedron Letters, 25, 2383-2386. [Google Scholar] [CrossRef]
|
|
[44]
|
Brimble, M.A., Davey, R.M. and McLeod, M.D. (2002) Synthesis of Azido Analogues of Medermycin. Synlett, 2002, 1318-1322. [Google Scholar] [CrossRef]
|
|
[45]
|
Brimble, M.A., Davey, R.M., McLeod, M.D. and Murphy, M. (2003) Synthesis of 3-Azido-2,3,6-trideoxy-β-D-arabino Hexopyranosyl Pyranonaphthoquinone Analogues of Medermycin. Organic & Biomolecular Chemistry, 1, 1690-1700. [Google Scholar] [CrossRef]
|
|
[46]
|
Hainke, S., Arndt, S. and Seitz, O. (2005) Concise Synthesis of Aryl-C-Nucleosides by Friedel-Crafts Alkylation. Or-ganic & Biomolecular Chemistry, 3, 4233-4238. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Wu, K., Wang, M., Yao, Q. and Zhang, A. (2013) Synthesis Study toward Mayamycin. Chinese Journal of Chemistry, 31, 93-99. [Google Scholar] [CrossRef]
|
|
[48]
|
Martin, G.D., Tan, L.T., Jensen, P.R., Dimayuga, R.E., Fairchild, C.R., Raventos-Suarez, C. and Fenical, W. (2007) Marmycins A and B, Cytotoxic Pentacyclic C-Glycosides from a Marine Sediment-Derived Actinomycete Related to the Genus Streptomyces. Journal of Natural Products, 70, 1406-1409. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Cañeque, T., Gomes, F., Mai, T.T., Blanchard, F., Retailleau, P., Gallard, J.F. and Rodriguez, R. (2017) A Synthetic Study towards the Marmycins and Analogues. Synthesis, 49, 587-592. [Google Scholar] [CrossRef]
|
|
[50]
|
Cañeque, T., Gomes, F., Mai, T.T., Maestri, G., Malacria, M. and Rodriguez, R. (2015) Synthesis of Marmycin A and Investigation into Its Cellular Activity. Nature Chemistry, 7, 744. [Google Scholar] [CrossRef] [PubMed]
|