非自治时滞捕食–食饵模型正周期解的存在性
The Existence of Positive Periodic Solutions for the Non-Autonomous Time-Delayed Predator-Prey Model
DOI: 10.12677/PM.2019.98116, PDF, HTML, 下载: 751  浏览: 1,582  科研立项经费支持
作者: 卢 旸, 王倩兰, 毕 波:东北石油大学数学与统计学院应用数学系,黑龙江 大庆
关键词: 捕食–食饵模型非自治时滞一致持久性正周期解Predator-Prey Model Non-Autonomous Time Delay Uniform Persistence Positive Periodic Solution
摘要: 本文建立了一个捕食者具有阶段结构的Beddington-DeAngelis型功能反应的时变捕食–食饵模型,通过定义两个正常数R*和R*得到了系统解持久或灭绝的充分条件。若R*>1,则系统的解是一致持久的,若R*<1,则捕食者种群灭绝。此外根据度理论的连续性定理,当系统解一致持久时,得到了系统至少存在一个正周期解。数值模拟验证并补充了定性理论分析的结果,得出幼年捕食者较短的成熟期有利于食饵和捕食者种群的持久生存。
Abstract: In this paper, a time-varying predator-prey model of Beddington-DeAngelis functional response with stage-structured is established. By defining two normal numbers R* and R*, we obtain suf-ficient conditions for the persistence or extinction of system solutions. If R*>1, the solution of the system is uniformly persistent; if R*<1, the predator will be extinct. In addition, according to the continuous theorem of degree theory, when the system solution is uniformly persistent, it is concluded that the system has at least one positive periodic solution. Numerical simulation verifies and complements the results of qualitative theoretical analysis, and concludes that the short maturity period of immature predators is beneficial to the persistent survival of prey and predator populations.
文章引用:卢旸, 王倩兰, 毕波. 非自治时滞捕食–食饵模型正周期解的存在性[J]. 理论数学, 2019, 9(8): 890-907. https://doi.org/10.12677/PM.2019.98116

参考文献

[1] Aiello, W. and Freeman, H.I. (1990) A Time-Delay Model of Single-Species Growth with Stage-Structure. Mathematical BioSciences, 101, 139-153.
https://doi.org/10.1016/0025-5564(90)90019-U
[2] Al-omari, J. and Gourley, S. (2003) Stability and Traveling Fronts in Lotka-Volterra Competition Models with Stage Structure. SIAM Journal on Applied Mathematics, 63, 2063-2086.
https://www.jstor.org/stable/4096076
https://doi.org/10.1137/S0036139902416500
[3] Liu, S., Chen, L., Luo, G. and Jiang, J. (2002) Asymptotic Behavior of Competitive Lotka-Volterra System with Stage Structure. Journal of Mathematical Analysis and Applications, 271, 124-138.
https://doi.org/10.1016/S0022-247X(02)00103-8
[4] Liu, S., Chen, L. and Agarwal, R. (2002) Recent Progress on Stage-Structured Population Dynamics. Mathematical and Computer Modelling, 36, 1319-1360.
https://doi.org/10.1016/S0895-7177(02)00279-0
[5] Liu, S., Chen, L. and Luo, G. (2002) Extinction and Permanence in Competitive Stage Structure System with Time Delays. Nonlinear Analysis, 51, 1317-1361.
https://doi.org/10.1016/S0362-546X(01)00901-4
[6] Ou, L., Lou, Y., Jiang, Y. and Li, Y. (2003) The Asymp-totic Behaviors of a Stage Structured Autonomous Predator-Prey System with Time Delay. Journal of Mathematical Analysis and Applications, 283, 534-548.
https://doi.org/10.1016/S0022-247X(03)00283-X
[7] Liu, Z. and Yuan, R. (2004) Stability and Bifurcation in a Delayed Predator-Prey System with Beddington-DeAngelis Functional Response. Journal of Mathematical Analysis and Applications, 296, 521-537.
https://doi.org/10.1016/j.jmaa.2004.04.051
[8] Liu, S. and Edoardo, B. (2010) Predator-Prey Model of Beddington-DeAngelis Type with Maturation and Gestation Delays. Nonlinear Analysis, 11, 4072-4091.
https://doi.org/10.1016/j.nonrwa.2010.03.013
[9] Cushing, J.M. (1997) Periodic Time-Dependent Predator-Prey System. SIAM Journal on Applied Mathematics, 32, 82-95.
https://doi.org/10.1137/0132006
[10] Yang, S.J. and Shi, B. (2008) Periodic Solution for a Three-Stage-Structured Predator-Prey System with Time Delay. Journal of Mathematical Analysis and Applications, 341, 287-294.
https://doi.org/10.1016/j.jmaa.2007.10.025
[11] Zhang, T. and Teng, Z. (2009) Permanence and Extinction for a Nonautonomous SIRS Epidemic Model with Time Delay. Applied Mathematical Modelling, 33, 1058-1071.
https://doi.org/10.1016/j.apm.2007.12.020
[12] Wang, X., Liu, S. and Song, X. (2013) Dynamic of a Nonautonomous HIV-1 Infection Model with Delays. International of Biomathematics, 6, Article ID: 1350030.
https://doi.org/10.1142/S1793524513500307
[13] Song, X. and Chen, L. (2001) Optimal Harvesting and Stability for a Two-Species Competitive System with Stage-Structure. Mathematical Biosciences, 170, 173-186.
https://doi.org/10.1016/S0025-5564(00)00068-7
[14] Liu, S. and Edoardo, B. (2006) A Stage-Structured Predator-Prey Model of Beddington-DeAngelis Type. SIAM Journal on Applied Mathematics, 4, 1001-1129.
https://doi.org/10.1137/050630003
[15] Gaines, R.E. and Mawhin, J.L. (1977) Coincidence Degree and Nonlinear Differential Equations. Springer-Verlag, Berlin.
https://doi.org/10.1007/BFb0089537
[16] Zhang, Z. and Luo, J. (2010) Multiple Periodic Solutions of a Delayed Predator-Prey System with Stage Structure for the Predator. Nonlinear Analysis, 11, 4109-4120.
https://doi.org/10.1016/j.nonrwa.2010.03.015
[17] Xu, R., Chaplain, M.A.J. and Davidson, F.A. (2005) Permanence and Periodicity of a Delayed Ratio-Dependent Predator-Prey Model with Stage Structure. Journal of Mathematical Analysis and Applications, 303, 602-621.
https://doi.org/10.1016/j.jmaa.2004.08.062