|
[1]
|
Mazimpaka, J.D. and Timpf, S. (2016) Trajectory Data Mining: A Review of Methods and Applications. Spatial Infor-mation Science, 13, 61-99. [Google Scholar] [CrossRef]
|
|
[2]
|
Feng, Z.N. and Zhu, Y.M. (2016) A Survey on Trajectory Data Mining: Techniques and Applications. IEEE Access, 4, 2056-3536. [Google Scholar] [CrossRef]
|
|
[3]
|
Wang, S.Z., Cao, J.N. and Yu, P.S. (2019) Deep Learning for Spatio-Temporal Data Mining: A Survey. CoRR abs/1906.04928.
|
|
[4]
|
Choi, S., Yeo, H. and Kim, J. (2018) Net-work-Wide Vehicle Trajectory Prediction in Urban Traffic Networks Using Deep Learning. Transportation Research Record, 2672, 173-184. [Google Scholar] [CrossRef]
|
|
[5]
|
Ma, X.L., Tao, Z.M., Wang, Y.H., Yu, H.Y. and Wang, Y.P. (2015) Long Short-Term Memory Neural Network for Traffic Speed Prediction Using Remote Microwave Sensor Data. Transportation Research Part C, 54, 187-197. [Google Scholar] [CrossRef]
|
|
[6]
|
Liao, B.B., Zhang, J.Q., Cai, M., Tang, S.L., Gao, Y.F., Wu, C., Yang, S.W., Zhu, W.W., Guo, Y.K. and Wu, F. (2018) Dest-ResNet: A Deep Spatiotemporal Residual Network for Hotspot Traffic Speed Prediction. Proceedings of the 26th ACM International Conference on Multimedia, Seoul, 22-26 October 2018, 1883-1891. [Google Scholar] [CrossRef]
|
|
[7]
|
Xu, J., Rahmatizadeh, R., Bölöni, L. and Turgut, D. (2018) Re-al-Time Prediction of Taxi Demand Using Recurrent Neural Networks. IEEE Transactions on Intelligent Transportation Systems, 19, 2572-2581. [Google Scholar] [CrossRef]
|
|
[8]
|
Rodrigues, F., Markou, I. and Pereira, F.C. (2019) Combining Time-Series and Textual Data for Taxi Demand Prediction in Event Areas: A Deep Learning Approach. Information Fu-sion, 49, 120-129. [Google Scholar] [CrossRef]
|
|
[9]
|
权波, 杨博辰, 胡可奇, 郭晨萱, 李巧勤. 基于LSTM的船舶航迹预测模型[J]. 计算机科学, 2018, 45(S2): 126-131.
|
|
[10]
|
Liu, Y.L. and Hansen, M. (2018) Predicting Aircraft Trajectories: A Deep Generative Convolutional Recurrent Neural Networks Approach. CoRR abs/1812.11670.
|
|
[11]
|
Yao, D., Zhang, C., Zhu, Z., Huang, J. and Bi, J. (2017) Trajectory Clustering via Deep Representation Learning. 2017 Inter-national Joint Conference on Neural Networks (IJCNN), Anchorage, AK, 14-19 May 2017, 3880-3887. [Google Scholar] [CrossRef]
|
|
[12]
|
樊玉琦, 温鹏飞, 许雄, 郭丹, 刘瑜岚. 基于卷积神经网络的雷达目标航迹识别研究[J]. 强激光与粒子束, 2019, 31(9): 68-73.
|
|
[13]
|
Fernando, T., Denman, S., Sridharan, S. and Fookes, C. (2018) Soft + Hardwired Attention: An LSTM Framework for Human Trajectory Prediction and Ab-normal Event Detection. Neural Networks, 108, 466-478. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ying, X.H., Mazer, J., Bernieri, G., Conti, M., Bushnell, L. and Poovendran, R. (2019) Detecting ADS-B Spoofing Attacks using Deep Neural Networks. 7th IEEE Conference on Communications and Network Security, Washington DC, 10-12 June 2019, 187-195. [Google Scholar] [CrossRef]
|
|
[15]
|
丁建立, 邹云开, 王静, 王怀超. 基于深度学习的ADS-B异常数据检测模型[J/OL]. 航空学报: 1-11 [2019-11-25].
|
|
[16]
|
Karim, F., Majumdar, S., Darabi, H. and Harford, S. (2019) Multivariate LSTM-FCNs for Time Series Classification. Neural Networks, 116, 237-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Shi, X.J., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K. and Woo, W.-C. (2015) Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M. and Garnett, R., Eds., Advances in Neural Information Processing Systems 28, Curran Associates, Inc., Red Hook, NY, 802-810.
|
|
[18]
|
Li, Z., He, D., Tian, F., Chen, W., Qin, T., Wang, L. and Liu, T. (2018) Towards Binary-Valued Gates for Robust LSTM Training. Proceedings of the 35th International Conference on Machine Learning, 80, 2995-3004.
|
|
[19]
|
Su, Y.H. and Jay Kuo, C.-C. (2019) On Extended Long Short-Term Memory and Dependent Bidirectional Recurrentneural Network. Neurocomputing, 356, 151-161. [Google Scholar] [CrossRef]
|
|
[20]
|
刘莹. 基于深度学习的轨迹预测[D]: [硕士学位论文]. 北京: 电子科技大学, 2019.
|
|
[21]
|
Li, X., Zhao, K., Cong, G., Jensen, C.S. and Wei, W. (2018) Deep Representation Learning for Trajectory Similarity Computation. 2018 IEEE 34th International Conference on Data Engineering (ICDE), Paris, France, 16-19 April 2018, 617-628. [Google Scholar] [CrossRef]
|
|
[22]
|
Liu, C., Hsaio, W. and Tu, Y. (2019) Time Series Classification with Multivariate Convolutional Neural Network. IEEE Transactions on Industrial Electronics, 66, 4788-4797. [Google Scholar] [CrossRef]
|
|
[23]
|
Lv, J., Li, Q., Sun, Q. and Wang, X. (2018) T-CONV: A Convolutional Neural Network for Multi-Scale Taxi Trajectory Prediction. 2018 IEEE International Conference on Big Data and Smart Computing, Shanghai, 15-17 January 2018, 82-89. [Google Scholar] [CrossRef]
|
|
[24]
|
Antonios, K., Nikolai, S. and Michael, B. (2018) A Convolu-tional Neural Network Approach for Modeling Semantic Trajectories and Predicting Future Locations. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L. and Maglogiannis, I., Eds., Artificial Neural Networks and Machine Learn-ing-ICANN 2018, Springer International Publishing, Cham, 61-72. [Google Scholar] [CrossRef]
|
|
[25]
|
Dai, A.M. and Le, Q.V. (2015) Semi-Supervised Sequence Learning. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M. and Garnett, R., Eds., Advances in Neural Infor-mation Processing Systems 28, Curran Associates, Inc., Red Hook, NY, 3079-3087.
|
|
[26]
|
Raghu, M., Poole, B., Klein-berg, J., Ganguli, S. and Sohl-Dickstein, J. (2017) On the Expressive Power of Deep Neural Networks. Proceedings of the 34th International Conference on Machine Learning, 70, 2847-2854.
|
|
[27]
|
韩剑峰. 一种基于雷达数据融合的航班4D航迹预测方法[J]. 软件工程, 2019, 22(9): 8-11.
|
|
[28]
|
Zheng, Y. (2015) Methodologies for Cross-Domain Data Fusion: An Overview. IEEE Transactions on Big Data, 1, 16-34. [Google Scholar] [CrossRef]
|
|
[29]
|
Abdollahi, M., Khaleghi, T. and Yang, K. (2020) An Inte-grated Feature Learning Approach Using Deep Learning for Travel Time Prediction. Expert Systems with Applications, 139, Article ID: 112864. [Google Scholar] [CrossRef]
|
|
[30]
|
Liu, J., Li, T.R., Xie, P., Du, S.D., Teng, F. and Yang, X. (2020) Urban Big Data Fusion Based on Deep Learning: An Overview. Information Fusion, 53, 123-133. [Google Scholar] [CrossRef]
|
|
[31]
|
Wu, Z., Huang, N.E., Long, S.R. and Peng, C.-K. (2007) On the Trend, Detrending, and Variability of Nonlinear and Nonstationary Time Series. Proceedings of the National Academy of Sciences of the United States of America, 104, 14889-14894. [Google Scholar] [CrossRef] [PubMed]
|