基于ADMM算法的鲁棒正则化问题求解方法
New Numerical Methods for Robust Regularization Problem Based on Alternating Direction Method of Multipliers
DOI: 10.12677/ORF.2020.102013, PDF, HTML, XML, 下载: 584  浏览: 976  国家自然科学基金支持
作者: 吉锋瑞, 文 杰*:南京航空航天大学理学院,江苏 南京
关键词: 线性回归正则化ADMM鲁棒性Linear Regression Regularization ADMM Robustness
摘要: 线性回归是机器学习中的重要模型,但是过大的数据量会使线性回归模型陷入过拟合。正则化技术是解决过拟合问题的主要方法。标准的正则化模型是运用线性回归项和正则项协同作用以达到保证分类质量和降低陷入过拟合风险的目的。但是当训练样本存在扰动时,标准的正则化模型得到的分类器会因为数据集存在扰动而表现得不稳定。针对该缺点,本文提出了两种鲁棒正则化模型:1) 随机鲁棒正则化:将残差的数学期望和正则项结合;2) 最坏情况鲁棒正则化:将最坏情况的残差和正则项结合。然后利用交替方向法(交替方向法,ADMM)求得鲁棒正则化模型的最优解。数值实验显示:当训练存在扰动的数据集时,随机鲁棒正则化和最坏情况鲁棒正则化得到的分类器具有很好的鲁棒性,而标准正则化方法得到的分类器波动很大。
Abstract: Linear regression is an important model in machine learning, but too large data will make the linear regression model fall into over-fitting problem. Regularization is the main method to solve the over-fitting problem. The standard regularization model is the method that linear re-gression co-operates with regularization to ensure the quality of classification and reduce the risk of falling into over-fitting. However, the classifier obtained by the standard regularization model will be unstable when the training samples are disturbed. To solve this problem, we pro-pose two kinds of robust regularization models: 1) Stochastic robust regularization: combining the expectation of residual with the regularization; 2) Worst case robust regularization: com-bining the worst case residual with the regularization. Then, we use Alternating Direction Method of Multipliers (ADMM) algorithm to get the optimal solution of the robust regularization model. Numerical experiments show that the classifiers obtained by stochastic and worst-case robust regularization have good robustness when training disturbed data sets, but the classifi-ers obtained by standard regularization method fluctuate greatly.
文章引用:吉锋瑞, 文杰. 基于ADMM算法的鲁棒正则化问题求解方法[J]. 运筹与模糊学, 2020, 10(2): 122-138. https://doi.org/10.12677/ORF.2020.102013

参考文献

[1] Boyd, S. and Vandenberghe, L. (2006) Convex Optimization. Cambridge University Press, Cambridge.
[2] 陈威, 艾婵. 基于多元线性回归模型的武汉市水资源承载力研究[J]. 河南理工大学学报(自然科学版), 2017, 36(1): 75-79.
[3] 薛斌, 程超, 欧世其, 等. 考虑舒适温度区间和突变量的月售电量预测线性回归模型[J]. 电力系统保护与控制, 2017, 45(1): 15-20.
[4] 田秀芹. 基于多元线性回归的粮食产量预测[J]. 科技创新与应用, 2017(16): 3-4.
[5] Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58, 267-288.
https://doi.org/ 10.1111/j.2517-6161.1996.tb02080.x
[6] Tibshirani, R. (2005) Sparsity and Smoothness via the Fused Lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 91-108.
https://doi.org/ 10.1111/j.1467-9868.2005.00490.x
[7] Hui, Z. (2005) Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 301-320.
https://doi.org/ 10.1111/j.1467-9868.2005.00503.x
[8] Tikhonov, A.N. (1977) Solution of Ill-Posed Problems. Winston, Washington DC.
[9] Zhang, C.-H. (2010) Nearly Unbiased Variable Selection under Minimax Concave Penalty. The Annals of Statistics, 38, 894-942.
https://doi.org/ 10.1214/09-AOS729
[10] Zhang, H.H., Ahn, J., Lin, X., et al. (2006) Gene Selection Using Support Vector Machines with Non-Convex Penalty. Bioinformatics, 22, 88-95.
https://doi.org/ 10.1093/bioinformatics/bti736
[11] Frank, L.L.E. and Fridman, J.H. (1993) A Statistical View of Some Chemometrics Regression Tools. Technometrics, 35, 109-135.
https://doi.org/ 10.1080/00401706.1993.10485033
[12] Hastie, T., Tibshirani, R. and Wainwright, M. (2016) Statistical Learning with Sparsity: The Lasso and Generalizations. CRC Press, Boca Raton, FL.
https://doi.org/ 10.1201/b18401
[13] 徐征, 刘遵雄, 张贤龙. 基于套索(Lasso)的中文垃圾邮件过滤[J]. 华东交通大学学报, 2014(4): 130-135.
[14] 孙昕. 基于Lasso方法的中国股市时滞性回归分析[D]: [硕士学位论文]. 大连: 大连理工大学, 2017.
[15] 谭勇, 谢林柏, 冯宏伟, 等. 基于LASSO回归的红外火焰探测器的设计与实现[J]. 激光与红外, 2019, 49(6): 720-724.
[16] 高魏, 闵捷, 张安录. 基于岭回归的农地城市流转影响因素分析[J]. 中国土地科学, 2007, 21(3): 51-58.
[17] 罗良文, 阚大学. 对外贸易和外商直接投资对中国人力资本存量影响的实证研究——基于岭回归分析法[J]. 世界经济研究, 2011(4): 33-37.
[18] Boyd, S., Parikh, N., Chu, E., et al. (2010) Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and Trends in Machine Learning, 3, 1-122.
https://doi.org/ 10.1561/2200000016
[19] Cai, X.J., Han, D.R. and Yuan, X.M. (2017) On the Convergence of the Direct Extension of ADMM for Three-Block Separable Convex Minimization Models with One Strongly Convex Function. Computational Optimization and Applications, 66, 39-73.
https://doi.org/ 10.1007/s10589-016-9860-y