H-张量的新判定及其应用
New Criteria for H-Tensors and Its Application
DOI: 10.12677/AAM.2020.95088, PDF, HTML, XML, 下载: 812  浏览: 2,547  科研立项经费支持
作者: 柏冬健, 徐玉梅, 吴 念:贵州民族大学数据科学与信息工程学院,贵州 贵阳
关键词: H-张量实对称张量不可约非零元素链正定性H-Tensors Real Symmetric Tensors Irreducible Nonzero Elements Chain Positive Definiteness
摘要: H-张量在科学和工程实际中具有重要应用,但在实际中要判定H-张量是比较困难的。通过构造不同的正对角阵,结合不等式的放缩技巧,给出了一些比较实用的新判别条件。作为应用,给出了判定偶数阶实对称张量正定性的条件,相应数值算例说明了新结果的有效性。
Abstract: H-tensors have wide applications in science and engineering, but it is difficult to determine whether a given tensor is an H-tensor or not in practice. In this paper, we give some practical conditions for H-tensors by constructing different positive diagonal matrices and applying some techniques of inequalities. As an application, some sufficient conditions of the positive definiteness for an even-order real symmetric tensor are given. Advantages of results obtained are illustrated by numerical examples.
文章引用:柏冬健, 徐玉梅, 吴念. H-张量的新判定及其应用[J]. 应用数学进展, 2020, 9(5): 742-751. https://doi.org/10.12677/AAM.2020.95088

1. 引言

张量是矩阵的高阶推广,广泛出现在图像处理、自动控制、医疗成像、超图论、高阶统计、弹性材料研究和数据分析等学科和工程中。近年来,很多专家和学者都对其进行了广泛探讨 [1] - [17]。本文在文 [13] 的基础上,继续讨论 H -张量的判定问题,得到了一些新的判定条件。同时,利用新得到的 H -张量的判定条件,给出了偶数阶实对称张量,即偶次齐次多项式正定性的判定方法。最后,给出了一些数值算例来说明新结果的有效性。

2. 预备知识

( ) 为复(实)数域, [ n ] : = { 1 , 2 , , n } 。一个复(实)m阶n维张量 A = ( a i 1 i 2 i m ) n m 个复(实)元素构成 [1] [2] [3] [4] [5],其中

a i 1 i 2 i m ( ) , i j [ n ] , j [ m ] .

显然,2阶张量即为矩阵。此外,张量被称为对称的 [6] [7],若

a i 1 i 2 i m = a π ( i 1 i 2 i m ) , π Π m ,

其中 Π m 为m个指标的置换群。若 a i 1 i 2 i m 0 ,那么称张量 A = ( a i 1 i 2 i m ) 为非负张量。

定义2.1 [8]:张量 被称作单位张量,其中

δ i 1 i 2 i m = { 1 , i 1 = i 2 = = i m 0 ,

定义2.2 [6]:给定一个m阶n维张量 A = ( a i 1 i 2 i m ) ,若存在一个复数 λ 和一个非零复向量 x = ( x 1 , x 2 , , x n ) T n ,满足

A x m 1 = λ x [ m 1 ] ,

那么称为张量 A 的特征值,x为张量 A 的关于特征值 λ 的特征向量,其中 A x m 1 x [ m 1 ] 的第i个分量分别为

( A x m 1 ) i = i 2 , , i m [ n ] a i i 2 i m x i 2 x i n , ( x [ m 1 ] ) i = x i m 1 .

记m阶n次齐次多项式 f ( x )

f ( x ) = i 1 , , i m [ n ] a i 1 i 2 i m x i 1 x i m , (1)

其中 x = ( x 1 , x 2 , , x n ) T n 。当m为偶数时, f ( x ) 是正定的,若

式(1)中的齐次多项式 f ( x ) 可以表示为m阶n维对称张量 A x m 的乘积 [9],如下

f ( x ) = A x m = i 1 , , i m [ n ] a i 1 i 2 i m x i 1 x i m , (2)

f ( x ) 是正定时,对称张量 A 也是正定的。

定义2.3 [10]:设 A = ( a i 1 i 2 i m ) 为m阶n维张量,如果对任意的 i [ n ]

(3)

则称 A 是对角占优张量。若对于任意的 i [ n ]

| a i i i | > i 2 , , i m [ n ] δ i i 2 i m = 0 | a i i 2 i m | , (4)

则称 A 是严格对角占优张量。

定义2.4 [11]:m阶n维张量 A = ( a i 1 i 2 i m ) 与矩阵 X = d i a g ( x 1 , x 2 , , x n ) 的乘积可表示为:

B = ( b i 1 i m ) = A X m 1 , b i 1 i 2 i m = a i 1 i 2 i m x i 2 x i 3 x i m , i j [ n ] , j [ m ] .

假设 Λ 表示 [ n ] 的任意非空子集,令

Λ m 1 : = { i 2 i 3 i m : i j Λ , j = 2 , 3 , , m } ,

[ n ] \ Λ m 1 : = { i 2 i 3 i m : i 2 i 3 i m [ n ] m 1 i 2 i 3 i m Λ m 1 } .

给定一个m阶n维张量 A = ( a i 1 i 2 i m ) ,令

R i ( A ) = i 2 , , i m [ n ] δ i i 2 i m = 0 | a i i 2 i m | = i 2 , , i m [ n ] | a i i 2 i m | | a i i i | ,

Λ 1 : = { i [ n ] : 0 < | a i i i | = R i ( A ) } , Λ 2 = { i [ n ] : 0 < | a i i i | < R i ( A ) } ,

Λ 3 = { i [ n ] : | a i i i | > R i ( A ) } , Λ 0 m 1 = Λ m 1 \ ( Λ 2 m 1 Λ 3 m 1 ) .

引理2.1 [12]:若 A 为严格对角占优张量,则 A H -张量。

引理2.2 [13]:设 A = ( a i 1 i 2 i m ) 为m阶n维张量。若 A 是不可约的,

| a i i i | R i ( A ) , i [ n ] ,

且至少有一个i使得严格不等式成立,则 A H -张量。

引理2.3 [13]:设 A = ( a i 1 i 2 i m ) 为m阶n维张量。如果存在一个正对角矩阵X,使得 H -张量,则 A H -张量。

引理2.4 [14]:设 A = ( a i 1 i 2 i m ) 为m阶n维张量。若

(i) i [ n ]

(ii) Λ 3 = { i [ n ] : | a i i i | > R i ( A ) }

(iii),从i到j存在一个非零元素链使得 j Λ 3

A H -张量。

3. 主要结果

为了叙述方便,引入以下符号:对 i Λ 2 ,记

α i = i 2 i 3 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | , β i = i 2 i 3 i m Λ 3 m 1 | a i i 2 i m | ,

x i = { | a i i i | α i β i , | a i i i | > α i , | a i i i | β i α i , | a i i i | > β i , | a i i i | R i ( A ) , | a i i i | min { α i , β i } . δ = max i Λ 2 ( x i )

再记

r = max i Λ 3 ( δ ( i 2 i 3 i m Λ 0 m 1 | a i i 2 i m | + i 2 i 3 i m Λ 2 m 1 | a i i 2 i m | ) | a i i i | i 2 i m Λ 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) ,

P i , r ( A ) = δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 | a i i 2 i m | ) + r i 2 i m Λ 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | ( i Λ 3 ) ,

h = max i Λ 3 ( δ ( i 2 , i 3 , , i m Λ 0 m 1 | a i i 2 i m | + i 2 i 3 i m Λ 2 m 1 | a i i 2 i m | ) P i , r ( A ) i 2 i m Λ 3 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } P j , r ( A ) | a j j j | | a i i 2 i m | ) .

易知 0 ≤ r < 1 ,且对任意的 i Λ 3

r | a i i i | δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 | a i i 2 i m | ) + r i 2 i m Λ 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | = P i , r ( A ) ,

从而有 0 P i , r ( A ) | a i i i | r < 1 , i Λ 3 。注意到

δ ( i 2 i 3 i m Λ 0 m 1 | a i i 2 i m | + i 2 i 3 i m Λ 2 m 1 | a i i 2 i m | ) P i , r ( A ) i 2 i m Λ 3 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } P j , r ( A ) | a j j j | | a i i 2 i m | = P i , r ( A ) r i 2 i m Λ 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | P i , r ( A ) i 2 i m Λ 3 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } P j , r ( A ) | a j j j | | a i i 2 i m | 1.

0 h 1 ,进而由h的定义可知,对于任意 i Λ 3 ,有

h P i , r ( A ) δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 | a i i 2 i m | ) + i 2 i m Λ 3 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } h P j , r ( A ) | a j j j | | a i i 2 i m | . (5)

定理3.1:设 A = ( a i 1 i 2 i m ) 为m阶n维张量。若对任意的 i Λ 2 A 满足

| a i i i | x i > δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) + i 2 i m Λ 3 m 1 max j { i 2 , i 3 , , i m } h P j , r ( A ) | a j j j | | a i i 2 i m | , (6)

且对 i Λ 1 ,存在 i 2 i 3 i m Λ 3 m 1 ,使得,则 A H -张量。

证明:由(6)式知,对对任意的 i Λ 2 ,

T i | a i i i | x i δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) i 2 i m Λ 3 m 1 max j { i 2 , i 3 , , i m } h P j , r ( A ) | a j j j | | a i i 2 i m | i 2 i m Λ 3 m 1 | a i i 2 i m | . (7)

i 2 i m Λ 3 m 1 | a i i 2 i m | = 0 时,记 T i = + 。由(7)式知 T i > 0 ( i Λ 2 ) ,且

0 h P j , r ( A ) | a j j j | < 1 ( j Λ 3 ) ,

从而必有充分小的正数 ε ,使 0 < ε < min i Λ 2 T i + ,且 max j Λ 3 { h P j , r ( A ) | a j j j | + ε } < 1

构造正对角矩阵 D = d i a g ( d 1 , d 2 , , d n ) ,记,其中

d i = { ( δ ) 1 m 1 , i Λ 1 , ( x i ) 1 m 1 , i Λ 2 , ( h P i , r ( A ) | a i i i | + ε ) 1 m 1 , i Λ 3 .

(a) 对 i Λ 1 ,存在 i 2 i 3 i m Λ 3 m 1 ,使得 a i i 2 i m 0 ,且对任意 j Λ 3 ,总可以取到充分小的正数,使得 0 < h P j , r ( A ) | a j j j | + ε r < δ < 1 ,则

R i ( B ) δ ( i 2 i m Λ 0 m 1 δ i i 2 i m = 0 | a i i 2 i m | + i 2 i m Λ 2 m 1 | a i i 2 i m | ) + i 2 i m Λ 3 m 1 | a i i 2 i m | ( ε + max j { i 2 i 3 i m } h P j , r ( A ) | a j j j | ) < δ ( i 2 i m Λ 0 m 1 δ i i 2 i m = 0 | a i i 2 i m | + i 2 , , i m Λ 2 m 1 | a i i 2 i m | + i 2 , , i m Λ 3 m 1 | a i i 2 i m | ) = δ R i ( A ) = | a i i i | δ = | b i i i | .

(b) 对 i Λ 2 ,由 (7)式知

R i ( B ) δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) + i 2 i m Λ 3 m 1 | a i i 2 i m | ( ε + max j { i 2 , i 3 , , i m } h P j , r ( A ) | a j j j | ) = ε i 2 i m Λ 3 m 1 | a i i 2 i m | + δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) + h i 2 i m Λ 3 m 1 max j { i 2 , i 3 , , i m } P j , r ( A ) | a j j j | | a i i 2 i m | < T i i 2 i m Λ 3 m 1 | a i i 2 i m | + μ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) + h i 2 i m Λ 3 m 1 max j { i 2 , i 3 , , i m } P j , r ( A ) | a j j j | | a i i 2 i m | = | a i i i | x i = | b i i i | .

(c) 对 i Λ 3 ,由(5)式知

R i ( B ) δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 | a i i 2 i m | ) + i 2 i m Λ 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | ( ε + max j { i 2 , i 3 , , i m } h P j , r ( A ) | a j j j | ) = ε i 2 i m Λ 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | + δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 | a i i 2 i m | ) + h i 2 i m Λ 3 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } P j , r ( A ) | a j j j | | a i i 2 i m | ε i 2 i m Λ 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | + h P i , r ( A ) < ε | a i i i | + h P i , r ( A ) = | b i i i | .

综上所述,,即 B 是严格对角占优的。由引理2.1知 B H -张量,进而由引理2.3知 A H -张量。

定理3.2:设 A = ( a i 1 i 2 i m ) 为m阶n维张量, A 不可约,若对任意的 i Λ 2

| a i i i | x i δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) + i 2 i m Λ 3 m 1 max j { i 2 , i 3 , , i m } h P j , r ( A ) | a j j j | | a i i 2 i m | , (8)

且(8)中至少有一个严格不等式成立,则 A H -张量。

证明:类似定理3.1的证明方法。由于 A 是不可约的,则

δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) 0 , i Λ 3 .

构造正对角矩阵 D = d i a g ( d 1 , d 2 , , d n ) ,其中

d i = { ( δ ) 1 m 1 , i Λ 1 , ( x i ) 1 m 1 , i Λ 2 , ( h P i , r ( A ) | a i i i | + ε ) 1 m 1 , i Λ 3 .

,则 B 不可约。类似于定理3.1的证明,可得 | b i i i | R i ( B ) ( i [ n ] ) ,且对 i Λ 2 ,(8)中至少有一个严格不等式成立,即存在一个 i 0 Λ 2 ,使得 | b i 0 i 0 i 0 | > R i 0 ( B ) 。由引理2.2知 B H -张量,进而由引理2.3知 A 也是 H -张量。

定理3.3:设 A = ( a i 1 i 2 i m ) 为m阶n维张量。若对任意的 i Λ 2

| a i i i | x i δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) + i 2 i m Λ 3 m 1 max j { i 2 , i 3 , , i m } h P j , r ( A ) | a j j j | | a i i 2 i m | ,

K ( A ) = [ i Λ 2 : | a i i i | x i > δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) + i 2 i m Λ 3 m 1 max j { i 2 , i 3 , , i m } h P j , r ( A ) | a j j j | | a i i 2 i m | ] ,

且对 i [ n ] \ K ,存在从i到j的非零元素链使得 ,则 A H -张量。

证明:构造正对角矩阵 D = d i a g ( d 1 , d 2 , , d n ) ,记,其中

d i = { ( δ ) 1 m 1 , i Λ 1 , ( x i ) 1 m 1 , i Λ 2 , ( h P i , r ( A ) | a i i i | ) 1 m 1 , i Λ 3 .

类似于的定理3.1的证明,可得 | b i i i | R i ( B ) ( i [ n ] ) ,至少存在一个 i Λ 2 ,使得 | b i i i | > R i ( B ) 。另外,如果 | b i i i | = R i ( B ) ,那么 i [ n ] \ K 。假设 A 中存在一个从i到j非零元素链使得 k K ,那么中也存在从i到j的非零元素链使得k满足 | b k k k | > R k ( B ) 。因此, B 满足引理2.4的条件,所以 H -张量,进而由引理2.3知 A H -张量。

例3.1:给定,其中

A ( 1 , : , : ) = ( 12 1 0 1 6 0 1 0 12 ) , A ( 2 , : , : ) = ( 1 0 0 0 10 2 0 2 2 ) , A ( 3 , : , : ) = ( 0 0 0 1 1 0 0 0 8 ) .

由张量 A 的元素得到

| a 111 | = 12 , R 1 = 21 , | a 222 | = 10 , R 2 = 7 , | a 333 | = 8 , R 3 = 2 ,

所以 Λ 1 = , Λ 2 = { 1 } , Λ 3 = { 2 , 3 } 。计算得

α 1 = 3 + 0 = 3 , β 1 = 12 + 6 = 18 ,

x 1 = 12 3 18 = 1 2 , δ = 1 2 , r i = 2 = 1 2 ( 0 + 1 ) 10 6 = 1 8 , r i = 3 = 1 2 ( 1 + 0 ) 8 1 = 1 14 ,

P 2 , r ( A ) = 1 2 ( 0 + 1 ) + 1 8 × 6 = 5 4 , P 3 , r ( A ) = 1 2 ( 1 + 0 ) + 1 8 × 1 = 5 8 ,

P 2 , r ( A ) | a 222 | = 5 4 10 = 1 8 , P 3 , r ( A ) | a 333 | = 5 8 8 = 5 64 , h i = 2 = 1 2 ( 0 + 1 ) 5 4 1 8 × 6 = 1 , h i = 3 = 1 2 ( 1 + 0 ) 5 8 1 8 × 1 = 1.

i = 1 时,有

δ ( k l Λ 0 2 | a 1 k l | + k l Λ 2 2 δ 1 k l = 0 | a 1 k l | ) + h k l Λ 3 2 max j { k , l } P j , r ( A ) | a j j j | | a 1 k l | = 1 2 ( 3 + 0 ) + 1 × 1 8 × ( 12 + 6 ) = 15 4 < 6 = 12 × 1 2 = | a 111 | x 1 .

所以张量 A 满足本文定理3.1的条件,故 A H -张量。但

k l [ n ] 2 \ Λ 3 2 δ 1 k l = 0 | a 1 k l | + k l Λ 3 2 max j { k , l } R j ( A ) | a j j j | | a 1 k l | = 3 + 7 10 × ( 12 + 6 ) = 78 5 > 12 = | a 111 | .

因此,不满足 [15] 中定理1.1的条件。

4. 应用

在这一节中,基于 H -张量的准则,我们提出了偶数阶实对称张量正定的一些新条件(多元形式的正定)。首先,我们给出以下引理:

引理4.1 [13]:设m阶n维张量 A = ( a i 1 i 2 i m ) 为偶数阶实对称张量,对任意的 i [ n ] 都满足 a i i i > 0

如果 A H -张量,则 A 是正定的。

根据引理4.1,定理3.1~3.3,得到以下结果:

定理4.1:设m阶n维张量 A = ( a i 1 i 2 i m ) 为偶数阶实对称张量,对任意的 i [ n ] 都满足 a i i i > 0

如果 A 满足下列条件之一:

i) 定理3.1的所有条件;

ii) 定理3.2的所有条件;

iii) 定理3.3的所有条件;

A 是正定的。

例4.1:设四次齐次多项式

f ( x ) = A x 4 = 15 x 1 4 + 23 x 2 4 + 26 x 3 4 + 18 x 4 4 + 12 x 1 2 x 2 x 3 12 x 2 x 3 2 x 4 24 x 1 x 2 x 3 x 4 ,

其中 A = ( a i 1 i 2 i m ) 是一个4阶4维的实对称张量,且

a 1111 = 15 , a 2222 = 23 , a 3333 = 26 , a 4444 = 18 ,

a 2113 = a 2131 = a 2311 = a 3112 = a 3121 = a 3211 = 1 ,

a 2334 = a 2343 = a 2433 = a 4233 = a 4323 = a 4332 = 1 ,

a 3234 = a 3243 = a 3324 = a 3342 = a 3423 = a 3432 = 1 ,

a 2134 = a 2143 = a 2314 = a 2341 = a 2413 = a 2431 = 1 ,

a 3124 = a 3142 = a 3214 = a 3241 = a 3412 = a 3421 = 1 ,

a 4123 = a 4132 = a 4213 = a 4231 = a 4312 = a 4321 = 1 ,

其余的 a i 1 i 2 i 3 i 4 = 0 。计算得

a 1111 = 15 < 18 = R 1 ( A ) ,

a 4444 ( a 1111 R 1 ( A ) + | a 1444 | ) = 54 < 0 = R 4 ( A ) | a 1444 | .

因此, A 既不是严格对角占优张量也不是拟双严格对角占优张量,所以不能用 [16] 的定理3和 [17] 的定理4来判定 A 的正定性。但是,可以证明 A 满足本文定理3.1的条件。因为

所以 Λ 1 = , Λ 2 = { 1 } , Λ 3 = { 2 , 3 , 4 } 。计算得

α 1 = 6 + 0 = 6 , β 1 = 6 , x 1 = 10 6 6 = 2 3 , δ = 2 3 ,

r i = 2 = 2 3 ( 9 + 0 ) 23 3 = 3 10 , r i = 3 = 2 3 ( 9 + 0 ) 26 6 = 3 10 , r i = 4 = 2 3 ( 6 + 0 ) 18 3 = 4 15 , r = 3 10 ,

P 2 , r ( A ) = 2 3 ( 9 + 0 ) + 3 10 × 3 = 69 10 , P 3 , r ( A ) = 2 3 ( 9 + 0 ) + 3 10 × 6 = 39 5 ,

P 4 , r ( A ) = 2 3 ( 6 + 0 ) + 3 10 × 3 = 49 10 , P 2 , r ( A ) | a 2222 | = 69 10 23 = 3 10 ,

P 3 , r ( A ) | a 3333 | = 39 5 26 = 3 10 , P 4 , r ( A ) | a 4444 | = 49 10 18 = 49 180 ,

h i = 2 = 2 3 ( 9 + 0 ) 69 10 3 10 × 3 = 1 , h i = 3 = 2 3 ( 9 + 0 ) 39 5 3 10 × 6 = 1 , h i = 4 = 2 3 ( 6 + 0 ) 49 10 3 10 × 3 = 1.

所以可得,当 i = 1 时,

δ ( j k o Λ 0 3 | a 1 j k o | + j k o Λ 2 3 δ 1 j k o = 0 | a 1 j k o | ) + h j k o Λ 3 3 max l { j , k , o } P l , r ( A ) | a l l l l | | a 1 j k o | = 2 3 ( 6 + 0 ) + 1 × 3 10 × 6 = 29 5 < 20 3 = 10 × 2 3 = | a 1111 | x 1 .

根据定理4.1,张量 A 是正定的,即 f ( x ) 是正定的。

5. 结论

本文讨论了 H -张量的判定问题,得到了几个新的判定不等式,并给出了其在偶数阶实对称张量,即偶次齐次多项式正定性判定中的应用。数值算例表明了本文所得结论的有效性。

致谢

感谢审稿老师和编辑老师提出了宝贵意见。

基金项目

贵州省科学技术基金(20181079, 20191161),贵州民族大学自然科学基金(GZMU[2019]YB08)。

参考文献

[1] Chang, K.C., Pearson, K. and Zhang, T. (2008) Perron-Frobenius Theorem for Nonnegative Tensors. Communications in Mathematical Sciences, 6, 507-520.
https://doi.org/10.4310/CMS.2008.v6.n2.a12
[2] Lathauwer, L.D., Moor, B.D. and Vandewalle, J. (2000) On the Best Rank-1 and Rank-(R1,R2,RN) Approximation of Higher-Order Tensors. SIAM Journal on Matrix Analysis and Applications, 21, 1324-1342.
https://doi.org/10.1137/S0895479898346995
[3] Liu, Y.J., Zhou, G.L. and Ibrahim, N.F. (2010) An Always Convergent Algorithm for the Largest Eigenvalue of an Irreducible Nonnegative Tensor. Journal of Computational and Applied Mathematics, 235, 286-292.
https://doi.org/10.1016/j.cam.2010.06.002
[4] Ng, M., Qi, L.Q. and Zhou, G.L. (2010) Finding the Largest Eigenvalue of a Nonnegative Tensor. SIAM Journal on Matrix Analysis and Applications, 31, 1090-1099.
https://doi.org/10.1137/09074838X
[5] Zhang, T. and Golub, G.H. (2001) Rank-One Approximation to Higher-Order Tensors. SIAM Journal on Matrix Analysis and Applications, 23, 534-550.
https://doi.org/10.1137/S0895479899352045
[6] Qi L. (2005) Eigenvalues of a Real Supersymetric Tensor. Journal of Symbolic Computation, 40, 1302-1324.
https://doi.org/10.1016/j.jsc.2005.05.007
[7] Kofidis, E. and Regalia, P.A. (2002) On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors. SIAM Journal on Matrix Analysis and Applications, 23, 863-884.
https://doi.org/10.1137/S0895479801387413
[8] Yang, Y.N. and Yang, Q.Z. (2011) Further Results for Perron-Frobenius Theorem for Nonnegative Tensors II. SIAM Journal on Matrix Analysis and Applications, 32,1236-1250.
https://doi.org/10.1137/100813671
[9] Ni, Q., Qi, L. and Wang, F. (2008) An Eigenvalue Method for Testing Positive Definiteness of a Multivariate Form. IEEE Transactions on Automatic Control, 53, 1096-1107.
https://doi.org/10.1109/TAC.2008.923679
[10] Zhang, L.P., Qi, L.Q. and Zhou, G.L. (2014) M-Tensors and Some Applications. SIAM Journal on Matrix Analysis and Applications, 35, 437-542.
https://doi.org/10.1137/130915339
[11] Kannana, M.R., Mondererb, N.S. and Bermana, A. (2015) Some Properties of Strong H-Tensors and General H-Tensors. Linear Algebra & Its Applications, 476, 42-55.
https://doi.org/10.1016/j.laa.2015.02.034
[12] Ding, W., Qi, L.Q. and Wei, Y.M. (2013) M-tensors and Nonsingular M-Tensors. Linear Algebra and Its Applications, 439, 3264-3278.
https://doi.org/10.1016/j.laa.2013.08.038
[13] Li, C.Q., Wang, F., Zhao, J.X., et al. (2014) Criterions for the Positive Definiteness of Real Supersymmetric Tensors. Journal of Computational and Applied Mathematics, 255, 1-14.
https://doi.org/10.1016/j.cam.2013.04.022
[14] , F. and Sun, D.S. (2016) New Criteria for H-Tensors and an Application. Journal of Inequalities and Applications, 96, 1-12.
https://doi.org/10.1186/s13660-016-1041-0
[15] Li, Y.T., Liu, Q.L. and Qi, L.Q. (2017) Programmable Criteria for Strong H-Tensors. Numerical Algorithms, 74, 199-221.
https://doi.org/10.1007/s11075-016-0145-4
[16] Qi, L.Q. and Song, Y.S. (2014) An Even Order Symmetric B-Tensor Is Positive Definite. Linear Algebra and Its Applications, 457, 303-312.
https://doi.org/10.1016/j.laa.2014.05.026
[17] Li, C.Q. and Li, Y.T. (2015) Double B-Tensors and Quasi-Double B-Tensors. Linear Algebra and Its Applications, 466, 343-356.
https://doi.org/10.1016/j.laa.2014.10.027