[1]
|
T. Mourier, D. C. Jeffares. Eukaryotic intron loss. Science, 2003, 300: 1393.
|
[2]
|
W. Gilbert. The exon theory of genes. Cold Spring Harbor Sym- posia Quantitative Biology, 1987, 52: 901-905.
|
[3]
|
G. Cho, R. F. Doolittle. Intron distribution in ancient paralogs sup-ports random insertion and not random loss. Journal of Molecular Evolution, 1997, 44(6): 573-584.
|
[4]
|
M. Rosbash, B. Séraphin. Who’s on first? The U1 snRNP-59 splice site interaction and splicing. Trends in Biochemical Sciences, 1991, 16: 187-190.
|
[5]
|
T. Sadusky, A. J. Newman and N. J. Dibb. Exon junction sequences as cryptic splice sites: Implications for intron origin. Current Biology, 2004, 14(6): 505-509.
|
[6]
|
S. Vanacova, W. Yan, J. M. Carlton, et al. Spliceosomal introns in the deep-branching eukaryote Trichomonas vaginalis. P The Proceedings of the National Academy of Sciences USA, 2005, 102: 4430-4435.
|
[7]
|
A. V. Sverdlov, I. B. Rogozin, V. N. Babenko, et al. Conservation versus parallel gains in intron evolution. Nucleic Acids Research, 2005, 33(6): 1741-1748.
|
[8]
|
S. W. Roy, A. Fedorov and W. Gilbert. Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain. The Proceedings of the National Academy of Sciences USA, 2003, 100(12): 7158-7162.
|
[9]
|
V. N. Babenko, I. B. Rogozin, S. L. Mekhedov, et al. Prevalence of intron gain over intron loss in the evolution of paralogous gene families. Nucleic Acids Research, 2004, 32(12): 3724-3733.
|
[10]
|
L. Carmel, I. B. Rogozin, Y. I. Wolf, et al. Evolutionarily conserved genes preferentially accumulate introns. Genome Research, 2007, 17: 1045-1050.
|
[11]
|
S. W. Roy, et al. The evolution of spliceosomal introns: Patterns, puzzles and progress. Nature Reviews Genetics, 2006, 7: 211-221.
|
[12]
|
D. Brett, H. Pospisi, J. Valcárcel, et al. Alternative splicing and genome complexity. Nature Genetics, 2002, 30(1): 29-30.
|
[13]
|
J. M. Comeron, M. Kreitman. The correlation between intron length and recombination in Drosophila. Dynamic equilibrium between mutational and selective forces. Genetics, 2000, 156(3): 1175-1190.
|
[14]
|
L. Carmel, Y. I. Wolf, I. B. Rogozin, et al. Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Research, 2007, 17: 1034-1044.
|
[15]
|
B. R. Graveley. Alternative splicing: Increasing diversity in the proteomic world. Trends Genet, 2001, 17(2): 100-107.
|
[16]
|
E. S. Maxwell, M. J. Fournier. The small nucleolar RNAs. Annual Review of Biochemistry, 1995, 64: 897-934.
|
[17]
|
K. M. Neugebauer. On the importance of being co-transcriptional. Journal of Cell Science, 2002, 115: 3865-3871.
|
[18]
|
E. van Wijk, R. J. Pennings, H. te Brinke, et al. Identification of 51 novel exons of the Usher syndrome type 2A (USH2A) gene that en-code multiple conserved functional domains and that are mutated in patients with Usher syndrome type II. The American Journal of Human Genetics, 2004, 74(4): 738-744.
|
[19]
|
B. Venkatesh, Y. Ning and S. Brenner. Late changes in spliceo- somal introns define clades in vertebrate evolution. The Proceedings of the National Academy of Sciences USA, 1999, 96(18): 10267-10271.
|
[20]
|
A. B. Rose. Intron-mediated regulation of gene expression. Current Topics in Microbiology and Immunology, 2008, 326: 277-290.
|