调和函数的高阶Schwarzian导数
Higher Order of Schwarzian Derivative of the Harmonic Functions
摘要: 本文定义了调和函数的高阶Schwarzian导数形式,井证明了其仍具有Möbius不变性。其次,本文给出了调和函数的高阶Schwarzian导数的一种等价刻画。
Abstract: In this paper, we define the higher order of Schwarzian derivative of the harmonic functions. We also prove that it is still Möbius invariant. Finally, we give an equivalentcharacterization of the higher order of Schwarzian derivative of the harmonic functions.
参考文献
|
[1]
|
Lewy, H. (1936) On the Non-Vanishing of the Jacobian in Certain One-to-One Mappings.
Bulletin of the American Mathematical Society, 42, 689-692. [Google Scholar] [CrossRef]
|
|
[2]
|
Hern´andez, R. and Mart´ın, M.J. (2015) Pre-Schwarzian and Schwarzian Derivatives of Har- monic Mappings. Journal of Geometric Analysis, 25, 64-91. [Google Scholar] [CrossRef]
|
|
[3]
|
Hern´andez, R. and Mart´ın, M.J. (2017) On the harmonic M¨obius Transformations. eprint arXiv:1710.05952.
|
|
[4]
|
Kim, S.-A. and Sugawa, T. (2011) Invariant Schwarzian Derivatives of Higher Order. Complex Analysis and Operator Theory, 5, 659-670. [Google Scholar] [CrossRef]
|
|
[5]
|
Donaire, J.J. (2019) A Shimorin-Type Estimate for Higher-Order Schwarzian Derivatives.
Computational Methods and Function Theory, 19, 315-322. [Google Scholar] [CrossRef]
|
|
[6]
|
Tamanoi, H. (1996) Higher Schwarzian Operators and Combinatorics of the Schwarzian Deriva- tive. Mathematische Annalen, 305, 127-151. [Google Scholar] [CrossRef]
|
|
[7]
|
Cho, N.E., Kumar, V. and Ravichandran, V. (2018) Sharp Bounds on the Higher Order Schwarzian Derivatives for Janowski Classes. Symmetry, 10, 348. [Google Scholar] [CrossRef]
|
|
[8]
|
张兆功, 刘礼泉. 单叶调和映照的反函数[J]. 数学进展, 1996, 25(3): 270-276.
|