解Burgers方程的分裂型最小二乘混合元方法
Two Splitting Least-Squares Mixed Element Methods For Burgers Equations
摘要: 本文对Burgers方程提出了Euler型分裂的最小二乘混合元格式,该格式最大的优点是将耦合的方程组系统分裂成为两个独立的子系统进行求解,从而在很大程度上降低了原问题的求解难度和规模,并通过引入适当的最小二乘泛函,得到原未知量的最优阶L
2(Ω) 模误差估计。
Abstract:
Two splitting least-squares mixed element methods are proposed to simulate Burgers equation in this paper. The advantage of this methods is that the coupled system can be split into two independent sub-systems and then reduce the difficulty and scale of primal problems. Theoerical analysis shows that the methods yield the approximate solutions for the primal problems with optimal accuracy in L2(Ω) norm.
参考文献
|
[1]
|
J. M. Burgers. A Mathematical Model Illustrating the Theory of Turbulence. New York: Adv in Appl Mech I, Academic Press, 1948: 171-199.
|
|
[2]
|
D. J. Evans, M. S. Sahimi. The numerical solution of Burgers equations by the alternation group explicit (AGE) method. Inter J Computer Math, 1989, 29(1): 39-64.
|
|
[3]
|
H. M. Gu. Characteristic Finite Element Methods for Nonlinear Sobolev Equations. Applied Mathematics and Computation, 1999, 102(1): 51-62.
|
|
[4]
|
H. M. Gu, D. P. Yang, S. L. Sui, et al. Least-squares Mixed Finite Element Method for a Class of Stokes Equation. Applied Mathematics and Mechanics, 2000, 21(5): 557-566.
|
|
[5]
|
H. M. Gu, X. N. Wu. Alternating-direction Iterative Technique for Mixed Finite Element Methods for Stokes Equations. Applied Mathematics and Computation, 2005, 162(3): 1035-1047.
|
|
[6]
|
Z. Q. Cai, J. Korsawe, G. Starke. An Adaptive Least Squares Mixed Finite Element Method for the Stress- Displacement Formulation of Linear Elasticity. Numer Methods Partial Differential Eq., 2005, 21(1): 132-148.
|
|
[7]
|
高夫征, 芮洪兴. 求解线性Sobolev方程的分裂型最小二乘混合元方法[J]. 计算数学, 2008, 30(3): 269-282.
|
|
[8]
|
P. G. Ciarlet. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978: 110-168.
|