|
[1]
|
Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
[Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Francipane, M.G. and Lagasse, E. (2014) mTOR Pathway in Colorectal Cancer: An Update. Oncotarget, 5, 49-66.
[Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ramjiawan, R.R., Griffioen, A.W. and Duda, D.G. (2017) Anti-Angiogenesis for Cancer Revisited: Is There a Role for Combinations with Immunotherapy? Angiogenesis, 20, 185-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Baluk, P., Hashizume, H. and McDonald, D.M. (2005) Cellular Abnormalities of Blood Vessels as Targets in Cancer. Current Opinion in Genetics and Development, 15, 102-111. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rosen, L.S., Jacobs, I.A. and Burkes, R.L. (2017) Bevacizumab in Colorectal Cancer: Current Role in Treatment and the Potential of Biosimilars. Targeted Oncology, 12, 599-610. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wildiers, H., Guetens, G., De Boeck, G., et al. (2003) Effect of Antivascular Endothelial Growth Factor Treatment on the Intratumoral Uptake of CPT-11. British Journal of Cancer, 88, 1979-1986. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hurwitz, H., Fehrenbacher, L., Novotny, W., et al. (2004) Bevacizumab plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer. The New England Journal of Medicine, 350, 2335-2342.
[Google Scholar] [CrossRef]
|
|
[8]
|
Cohen, M.H., Gootenberg, J., Keegan, P. and Pazdur, R. (2007) FDA Drug Approval Summary: Bevacizumab plus FOLFOX4 as Second-Line Treatment of Colorectal Cancer. Oncologist, 12, 356-361.
[Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Spratlin, J.L., Cohen, R.B., Eadens, M., et al. (2010) Phase I Pharmacologic and Biologic Study of Ramucirumab (IMC-1121B), a Fully Human Immunoglobulin G1 Monoclonal Antibody Targeting the Vascular Endothelial Growth Factor Receptor-2. Journal of Clinical Oncology, 28, 780-787. [Google Scholar] [CrossRef]
|
|
[10]
|
Reck, M., Garon, E.B., Paz-Ares, L., et al. (2018) Randomized, Double-Blind Phase Ib/III Study of Erlotinib with Ramucirumab or Placebo in Previously Untreated EGFR-Mutant Metastatic Non-Small-Cell Lung Cancer (RELAY): Phase Ib Results. Clinical Lung Cancer, 19, 213-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Verdaguer, H., Tabernero, J. and Macarulla, T. (2016) Ramucirumab in Metastatic Colorectal Cancer: Evidence to Date and Place in Therapy. Therapeutic Advances in Medical Oncology, 8, 230-242.
[Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Garcia-Carbonero, R., Rivera, F., Maurel, J., et al. (2014) An Open-Label Phase II Study Evaluating the Safety and Efficacy of Ramucirumab Combined with mFOLFOX-6 as First-Line Therapy for Metastatic Colorectal Cancer. Oncologist, 19, 350-351. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cai, S. and Bressler, N.M. (2017) Aflibercept, Bevacizumab or Ranibizumab for Diabetic Macular Oedema: Recent Clinically Relevant Findings from DRCR.net Protocol T. Current Opinion in Ophthalmology, 28, 636-643.
[Google Scholar] [CrossRef]
|
|
[14]
|
Van Cutsem, E., Tabernero, J., Lakomy, R., et al. (2012) Addition of Aflibercept to Fluorouracil, Leucovorin, and Irinotecan Improves Survival in a Phase III Randomized Trial in Patients with Metastatic Colorectal Cancer Previously Treated with an Oxaliplatin-Based Regimen. Journal of Clinical Oncology, 30, 3499-3506.
[Google Scholar] [CrossRef]
|
|
[15]
|
Mody, K., Baldeo, C. and Bekaii-Saab, T. (2018) Antiangiogenic Therapy in Colorectal Cancer. The Cancer Journal, 24, 165-170. [Google Scholar] [CrossRef]
|
|
[16]
|
Gao, M., Liang, X.J., Zhang, Z.S., et al. (2013) Relationship between Expression of EGFR in Gastric Cancer Tissue and Clinicopathological Features. Asian Pacific Journal of Tropical Medicine, 6, 260-264.
[Google Scholar] [CrossRef]
|
|
[17]
|
Akhtar, S., Al-Zaid, B., El-Hashim, A.Z., et al. (2015) Cationic Polyamidoamine Dendrimers as Modulators of EGFR Signaling in Vitro and in Vivo. PLoS ONE, 10, e0132215. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Fornasier, G., Francescon, S. and Baldo, P. (2018) An Update of Efficacy and Safety of Cetuximab in Metastatic Colorectal Cancer: A Narrative Review. Advances in Therapy, 35, 1497-1509. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Park, T., Choi, C.J., Choi, Y. and Suh, D.C. (2016) Cost-Effectiveness of Cetuximab for Colorectal Cancer. Expert Review of Pharmacoeconomics & Outcomes Research, 16, 667-677. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Karapetis, C.S., Khambata-Ford, S., Jonker, D.J., et al. (2008) K-ras Mutations and Benefit from Cetuximab in Advanced Colorectal Cancer. The New England Journal of Medicine, 359, 1757-1765.
[Google Scholar] [CrossRef]
|
|
[21]
|
Van Cutsem, E., Bodoky, G., Kyung Roh, J., et al. (2007) 3001O-RAL Crystal, a Randomized Phase III Trial of Cetuximab plus FOLFIRI vs. FOLFIRI in First-Line Metastatic Colorectal Cancer (mCRC). European Journal of Cancer Supplements, 5, 235. [Google Scholar] [CrossRef]
|
|
[22]
|
Sobrero, A.F., Maurel, J., Fehrenbacher, L., et al. (2008) EPIC: Phase III Trial of Cetuximab plus Irinotecan after Fluoropyrimidine and Oxaliplatin Failure in Patients with Metastatic Colorectal Cancer. Journal of Clinical Oncology, 26, 2311-2319. [Google Scholar] [CrossRef]
|
|
[23]
|
Holch, J.W., Ricard, I., Stintzing, S., et al. (2017) The Relevance of Primary Tumour Location in Patients with Metastatic Colorectal Cancer: A Meta-Analysis of First-Line Clinical Trials. European Journal of Cancer, 70, 87-98.
[Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Tejpar, S., Stintzing, S., Ciardiello, F., et al. (2017) Prognostic and Predictive Relevance of Primary Tumor Location in Patients with RAS Wild-Type Metastatic Colorectal Cancer: Retrospective Analyses of the CRYSTAL and FIRE-3 Trials. JAMA Oncology, 3, 194-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Price, T.J., Peeters, M., Kim, T.W., et al. (2014) Panitumumab versus Cetuximab in Patients with Chemotherapy-Refractory Wild-Type KRAS Exon 2 Metastatic Colorectal Cancer (ASPECCT): A Randomised, Multicentre, Open-Label, Non-Inferiority Phase 3 Study. The Lancet Oncology, 15, 569-579.
[Google Scholar] [CrossRef]
|
|
[26]
|
Modest, D.P., Martens, U.M., Riera-Knorrenschild, J., et al. (2019) FOLFOXIRI plus Panitumumab as First-Line Treatment of RAS Wild-Type Metastatic Colorectal Cancer: The Randomized, Open-Label, Phase II VOLFI Study (AIO KRK0109). Journal of Clinical Oncology, 37, 3401-3411. [Google Scholar] [CrossRef]
|
|
[27]
|
Douillard, J.Y., Oliner, K.S., Siena, S., et al. (2013) Panitumumab-FOLFOX4 Treatment and RAS Mutations in Colorectal Cancer. The New England Journal of Medicine, 369, 1023-1034. [Google Scholar] [CrossRef]
|
|
[28]
|
Modest, D.P., Rivera, F., Bachet, J.B., et al. (2019) Panitumumab-Based Maintenance after Oxaliplatin Discontinuation in Metastatic Colorectal Cancer: A Retrospective Analysis of Two Randomised Trials. International Journal of Cancer, 145, 576-585. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Grothey, A., Van Cutsem, E., Sobrero, A., et al. (2013) Regorafenib Monotherapy for Previously Treated Metastatic Colorectal Cancer (CORRECT): An International, Multicentre, Randomised, Placebo-Controlled, Phase 3 Trial. The Lancet, 381, 303-312. [Google Scholar] [CrossRef]
|
|
[30]
|
Dhillon, S. (2018) Regorafenib: A Review in Metastatic Colorectal Cancer. Drugs, 78, 1133-1144.
[Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Cao, J., Zhang, J., Peng, W., et al. (2016) A Phase I Study of Safety and Pharmacokinetics of Fruquintinib, a Novel Selective Inhibitor of Vascular Endothelial Growth Factor Receptor-1, -2, and -3 Tyrosine Kinases in Chinese Patients with Advanced Solid Tumors. Cancer Chemotherapy and Pharmacology, 78, 259-269.
[Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Shirley, M. (2018) Fruquintinib: First Global Approval. Drugs, 78, 1757-1761.
[Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Xu, R.H., Shen, L., Wang, K.M., et al. (2017) Famitinib versus Placebo in the Treatment of Refractory Metastatic Colorectal Cancer: A Multicenter, Randomized, Double-Blinded, Placebo-Controlled, Phase II Clinical Trial. Chinese Journal of Cancer, 36, 97. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Sun, Y., Niu, W., Du, F., et al. (2016) Safety, Pharmacokinetics, and Antitumor Properties of Anlotinib, an Oral Multi-Target Tyrosine Kinase Inhibitor, in Patients with Advanced Refractory Solid Tumors. Journal of Hematology & Oncology, 9, 105. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhou, A.P., Bai, Y., Song, Y., et al. (2019) Anlotinib versus Sunitinib as First-Line Treatment for Metastatic Renal Cell Carcinoma: A Randomized Phase II Clinical Trial. Oncologist, 24, e702-e708.
[Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Hu, Y., Zhou, P., Lin, Y., et al. (2019) Anti-Colorectal Cancer Effect via Application of Polyethylene Glycol Modified Liposomal Apatinib. Journal of Biomedical Nanotechnology, 15, 1256-1266. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Geng, R., Song, L., Li, J. and Zhao, L. (2018) The Safety of Apatinib for the Treatment of Gastric Cancer. Expert Opinion on Drug Safety, 17, 1145-1150. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chen, X., Qiu, T., Zhu, Y., et al. (2019) A Single-Arm, Phase II Study of Apatinib in Refractory Metastatic Colorectal Cancer. Oncologist, 24, 883-e407. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Chang, T.C., Chin, Y.T., Nana, A.W., et al. (2018) Enhancement by Nano-Diamino-Tetrac of Antiproliferative Action of Gefitinib on Colorectal Cancer Cells: Mediation by EGFR Sialylation and PI3K Activation. Hormones and Cancer, 9, 420-432. [Google Scholar] [CrossRef] [PubMed]
|