|
[1]
|
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ramasubramaniam, A., Naveh, D. and Towe, E. (2011) Tunable Band Gaps in Bilayer Transition-Metal Dichalcogenides. Physical Review B, 84, Article No. 205325. [Google Scholar] [CrossRef]
|
|
[3]
|
Khoo, K.H., Mazzoni, M.S.C. and Louie, S.G. (2004) Tuning the Electronic Properties of Boron Nitride Nanotubes with Transverse Electric Fields: A Giant DC Stark Effect, Physical Review B, 69, Article No. 201401. [Google Scholar] [CrossRef]
|
|
[4]
|
Qi, J., Li, X., Qian, X. and Feng, J. (2013) Bandgap Engineer-ing of Rippled MoS2 Monolayer under External Electric Field. Applied Physics Letters, 102, Article No. 173112. [Google Scholar] [CrossRef]
|
|
[5]
|
Chen, P., Cheng, C., Shen, C., Zhang, J., Wu, S., Lu, X.B., Wang, S.P., Du, L.J., Watanabe, K.J., Taniguchi, T., Sun, J.T., Yang, R., Shi, D.X., Liu, K.H., Meng, S. and Zhang, G.Y. (2019) Band Evolution of Two-Dimensional Transition Metal Dichalcogenides under Electric Fields. Applied Physics Letters, 115, Article No. 083104. [Google Scholar] [CrossRef]
|
|
[6]
|
Lu, N., Guo, H., Li, L., Dai, J., Wang, L., Mei, W.N., Wu, X.J. and Zeng, X.C. (2014) MoS2/MX2 Heterobilayers: Bandgap Engineering via Tensile Strain or External Electrical Field. Nanoscale, 6, 2879-2886. [Google Scholar] [CrossRef]
|
|
[7]
|
Xue, X., Wang, X. and Mi, W. (2018) Electric Field Effects on Elec-tronic Structure of Tantalum Dichalcogenides van der Waals TaS2/TaSe2 and TaSe2/TaTe2 Heterostructures. Applied Sur-face Science, 455, 963-969. [Google Scholar] [CrossRef]
|
|
[8]
|
Li, J., Liu, E.Z., Ma, Y.N., Hu, X.Y., Wan, J., Sun, L. and Fan, J. (2016) Synthesis of MoS2/g-C3N4 Nanosheets as 2D Heterojunction Photocatalysts with Enhanced Visible Light Ac-tivity. Applied Surface Science, 364, 694-702. [Google Scholar] [CrossRef]
|
|
[9]
|
Ye, J., Liu, J. and An, Y. (2020) Electric Field and Strain Effects on the Electronic and Optical Properties of gC3N4/WSe2 van der Waals Heterostructure. Applied Surface Science, 501, Article No. 144262. [Google Scholar] [CrossRef]
|
|
[10]
|
Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S. and Lin, Z. (2014) Vertical and In-Planeheterostructures from WS2/MoS2 Monolayers. Nature Materials, 13, 1135-1142. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zheng, Z., Wang, X. and Mi, W. (2017) Electric Field Tunable Electronic Structure in Two-Dimensional van der Waals g-C2N/XSe2 (X = Mo, W) Heterostructures. Carbon, 117, 393-398. [Google Scholar] [CrossRef]
|
|
[12]
|
Bafekry, A., Stampfl, C. and Ghergherehchi, M. (2020) Strain, Electric-Field and Functionalization Induced Widely Tunable Electronic Properties in MoS2/BC3, /C3N and /C3N4 van der Waals Heterostructures. Nanotechnology, 31, Article No. 295202. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Nguyen, H.T.T., Obeid, M.M., Bafekry, A., Idrees, M., Vut, V., Phuc, H.V., Hieun, N., HoaL, T., Amin, B. and Nguyen, C.V. (2020) Interfacial Characteristics, Schottky Contact, and Optical Performance of a Graphene/Ga2SSe van der Waals Heterostructure: Strain Engineering and Electric Field Tuna-bility. Physicalreview B, 102, Article No. 075414. [Google Scholar] [CrossRef]
|