|
[1]
|
Abedin, A.H. and Rosen, M.A. (2012) Closed and Open Thermochemical Energy Storage: Energy- and Exergy-Based Comparisons. Energy, 41, 83-92. [Google Scholar] [CrossRef]
|
|
[2]
|
李威, 陈威, 王丹丹. 基于水合盐热化学储能的技术研究与进展[J]. 制冷与空调, 2017, 17(8): 14-21.
|
|
[3]
|
Carden, P.O. (1977) Energy Cor-radiation Using the Reversible Ammonia Reaction. Solar Energy, 19, 365-378. [Google Scholar] [CrossRef]
|
|
[4]
|
Dunn, R., Lovegrove, K. and Burgess, G. (2012) A Review of Ammonia-Based Thermochemical Energy Storage for Concentrating Solar Power. Proceedings of the IEEE, 100, 391-400. [Google Scholar] [CrossRef]
|
|
[5]
|
Chen, C., Aryafar, H., Lovegrove, K.M., et al. (2017) Modeling of Ammonia Synthesis to Produce Supercritical Steam for Solar Thermochemical Energy Storage. Solar En-ergy, 155, 363-371. [Google Scholar] [CrossRef]
|
|
[6]
|
Lavine, A.S., Lovegrove, K.M., Jordan, J., et al. (2016) Thermochemical Energy Storage with Ammonia: Aiming for the Sunshot Cost Target. [Google Scholar] [CrossRef]
|
|
[7]
|
Williams, O.M. (1980) Design and Cost Analysis for an Ammonia-Based Solar Thermochemical Cavity Absorber. Solar Energy, 24, 255-263. [Google Scholar] [CrossRef]
|
|
[8]
|
Williams, O.M. (1980) Evaluation of Wall Temperature Difference Profiles for Heat Absorption Tubes Exposed Nonuniformly to Solar Radiation. Solar Energy, 24, 597-600. [Google Scholar] [CrossRef]
|
|
[9]
|
Lovegrove, K. and Luzzi, A.J. (1996) Endothermic Reactors for an Ammonia Based Thermochemical Solar Energy Storage and Transport System. Solar Energy, 56, 361-371. [Google Scholar] [CrossRef]
|
|
[10]
|
李学德, 梁平, 曾东平. 氨基热化学蓄能太阳能热力发电研究的进展[J]. 广东电力, 2000(4): 3-6.
|
|
[11]
|
Caldwell, McDonald, J.W., et al. (1965) Solar-Energy Receiver with Lithium-Hydride Heat Storage. Solar Energy, 9, 48-60. [Google Scholar] [CrossRef]
|
|
[12]
|
Kawamura, M., Ono, S. and Mizuno, Y. (1983) Dynamic Characteristics of a Hydride Heat Storage System. Journal of the Less-Common Metals, 89, 365-372. [Google Scholar] [CrossRef]
|
|
[13]
|
周承商, 刘煌, 刘咏, 等. 金属氢化物热能储存及其研究进展[J]. 粉末冶金材料科学与工程, 2019, 24(5): 391-399.
|
|
[14]
|
Andreas, Z. (2003) Materials for Hydrogen Storage. Materials Today, 6, 24-33. [Google Scholar] [CrossRef]
|
|
[15]
|
Ross, D.K. (2006) Hydrogen Storage: The Major Techno-logical Barrier to the Development of Hydrogen Fuel Cell Cars. Vacuum, 80, 1084-1089. [Google Scholar] [CrossRef]
|
|
[16]
|
Pohlmann, C. and Hutsch, T. (2013) Novel Approach for Thermal Diffusivity Measurements in Inert Atmosphere Using the Flash Method. Journal of Thermal Analysis and Calorimetry, 114, 629-634. [Google Scholar] [CrossRef]
|
|
[17]
|
Chen, Y., Sequeira, C.A.C., Chen, C., et al. (2003) Metal Hydride Beds and Hydrogen Supply Tanks as Minitype PEMFC Hydrogen Sources. International Journal of Hydrogen Energy, 28, 329-333. [Google Scholar] [CrossRef]
|
|
[18]
|
Ma, J., Wang, Y., Shi, S., et al. (2014) Optimization of Heat Transfer Device and Analysis of Heat & Mass Transfer on the Finned Multi-Tubular Metal Hydride Tank. International Journal of Hydrogen Energy, 39, 13583-13595. [Google Scholar] [CrossRef]
|
|
[19]
|
Singh, A., Maiya, M.P. and Murthy, S.S. (2015) Effects of Heat Exchanger Design on the Performance of a Solid State Hydrogen Storage Device. International Journal of Hy-drogen Energy, 40, 9733-9746. [Google Scholar] [CrossRef]
|
|
[20]
|
Lai, Q., Thornton, A.W., Hill, M.R., et al. (2015) Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art. ChemSusChem, 8, 2789-2825. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
赵倩, 丁干红. 甲烷二氧化碳重整工艺研究及经济性分析[J]. 天然气化工(C1化学与化工), 2020, 45(4): 71-75+81.
|
|
[22]
|
Zhao, Y., Kang, Y., Li, H., et al. (2018) CO2 Conversion to Synthesis Gas via DRM on the Durable Al2O3/Ni/Al2O3 Sandwich Catalyst with High Activity and Stability. Green Chemistry, 20, 2781-2787. [Google Scholar] [CrossRef]
|
|
[23]
|
Kambolis, A., Matralis, H., Trovarelli, A., et al. (2010) Ni/CeO2-ZrO2 Catalysts for the Dry Reforming of Methane. Applied Catalysis A General, 377, 16-26. [Google Scholar] [CrossRef]
|
|
[24]
|
Bradford, M.C.J. and Vannice, M.A. (1996) Catalytic Reforming of Methane with Carbon Dioxide over Nickel Catalysts II. Reaction Kinetics. Applied Catalysis A General, 142, 97-122. [Google Scholar] [CrossRef]
|
|
[25]
|
Tsipouriari, V.A. and Verykios, X.E. (2001) Kinetic Study of the Catalytic Reforming of Methane with Carbon Dioxide to Synthesis Gas over Ni/La2O3 Catalyst. Catalysis Today, 64, 83-90. [Google Scholar] [CrossRef]
|
|
[26]
|
Rabelo-Neto, R.C., Sales, H.B.E., Inocêncio, C.V.M., et al. (2018) CO2 Reforming of Methane over Supported LaNiO3 Perovskite-Type Oxides. Applied Catalysis B—Environmental, 221, 349-361. [Google Scholar] [CrossRef]
|
|
[27]
|
Roh, H.S., Potdar, H.S. and Jun, K.W. (2004) Carbon Dioxide Reforming of Methane over Co-Precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce-ZrO2 Catalysts. Catalysis Today, 93, 39-44. [Google Scholar] [CrossRef]
|
|
[28]
|
Edwards, S.E.B. and Materic, V. (2012) Calcium Looping in Solar Power Generation Plants. Solar Energy, 86, 2494-2503. [Google Scholar] [CrossRef]
|
|
[29]
|
Cormos, A.M. and Simon, A. (2015) Assessment of CO2 Cap-ture by Calcium Looping (CaL) Process in a Flexible Power Plant Operation Scenario. Applied Thermal Engineering, 80, 319-327. [Google Scholar] [CrossRef]
|
|
[30]
|
Chacartegui, R., Alovisio, A., et al. (2016) Thermo-chemical Energy Storage of Concentrated Solar Power by Integration of the Calcium Looping Process and a CO2 Power Cycle. Applied Energy, 173, 589-605. [Google Scholar] [CrossRef]
|
|
[31]
|
Muñoz-Antón, J., Rubbia, C., Rovira, A., et al. (2015) Per-formance Study of Solar Power Plants with CO2 as Working Fluid. A Promising Design Window. Energy Conversion & Management, 92, 36-46. [Google Scholar] [CrossRef]
|
|
[32]
|
Valverde, J.M., Sanchez-Jimenez, P.E. and Perez-Maqueda, L.A. (2014) Effect of Heat Pretreatment/Recarbonation in the Ca-Looping Process at Realistic Calcination Conditions. Energy and Fuels, 28, 4062-4067. [Google Scholar] [CrossRef]
|
|
[33]
|
Valverde, J.M., Sanchez-Jimenez, P.E. and Perez-Maqueda, L.A. (2014) Role of Precalcination and Regeneration Conditions on Postcombustion CO2 Capture in the Ca-Looping Technology. Applied Energy, 136, 347-356. [Google Scholar] [CrossRef]
|
|
[34]
|
Valverde, J.M., Barea-López, M., Perejón, A., et al. (2017) Effect of Thermal Pretreatment and Nanosilica Addition on Limestone Performance at Calcium-Looping Conditions for Thermochemical Energy Storage of Concentrated Solar Power. Energy and Fuels, 31, 4226-4236. [Google Scholar] [CrossRef]
|
|
[35]
|
Sun, P., Grace, J.R., Lim, C.J., et al. (2008) Investigation of Attempts to Improve Cyclic CO2 Capture by Sorbent Hydration and Modification. Industrial & Engineering Chemistry Research, 47, 2024-2032. [Google Scholar] [CrossRef]
|
|
[36]
|
Sayyah, M., Lu, Y.Q., et al. (2012) Mechanical Activation of CaO-Based Adsorbents for CO2 Capture. ChemSusChem, 6, 193-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Mastronardo, E., Bonaccorsi, L., Kato, Y., et al. (2016) Thermo-chemical Performance of Carbon Nanotubes Based hybrid Materials for MgO/H2O/Mg(OH)2 Chemical Heat Pumps. Applied Energy, 181, 232-243. [Google Scholar] [CrossRef]
|
|
[38]
|
Wereko-Brobby, C.Y. and Gibbs, B.M. (1979) Calcium Hy-droxide as an Energy Storage Medium for Solar Power Systems. International Conference on Future Energy Concepts, London, 207-210.
|
|
[39]
|
Xia, B.Q., Zhao, C.Y., Yan, J., et al. (2019) Development of Granular Thermochemical Heat Storage Composite Based on Calcium Oxide. Renewable Energy, 147, 969-978. [Google Scholar] [CrossRef]
|
|
[40]
|
Roßkopf, C., et al. (2014) Improving Powder Bed Properties for Thermochemical Storage by Adding Nanoparticles. Energy Conversion & Management, 86, 93-98. [Google Scholar] [CrossRef]
|
|
[41]
|
Roßkopf, C., Afflerbach, S., Schmidt, M., et al. (2015) In-vestigations of Nano Coated Calcium Hydroxide Cycled in a Thermochemical Heat Storage. Energy Conversion and Management, 97, 94-102. [Google Scholar] [CrossRef]
|
|
[42]
|
Sakellariou, K.G., Criado, Y.A., Tsongidis, N.I., et al. (2017) Multi-Cyclic Evaluation of Composite CaO-Based Structured Bodies for Thermochemical Heat Storage via the CaO/Ca(OH)2 Reaction Scheme (vol. 146, pg 65, 2017). Solar Energy, 150, 619-620. [Google Scholar] [CrossRef]
|
|
[43]
|
Bowery, R.G. and Justen, J. (1978) Energy Storage Using the Reversible Oxidation of Barium Oxide. Solar Energy, 21, 523-525. [Google Scholar] [CrossRef]
|
|
[44]
|
Wong, B. (2011) Thermochemical Heat Storage for Con-centrated Solar Power. Final Report for the US Department of Energy.
|
|
[45]
|
Carrillo, A.J., Sastre, D., Serrano, D.P., et al. (2016) Revisiting the BaO2/BaO Redox Cycle for Solar Thermochemical Energy Storage. Physical Chemistry Chemical Physics, 18, 8039-8048. [Google Scholar] [CrossRef]
|
|
[46]
|
Mueller, D., Knoll, C., Artner, W., et al. (2017) Combining In-Situ X-Ray Diffraction with Thermogravimetry and Differential Scanning Calorimetry: An Investigation of CO3O4, MnO2 and PbO2 for Thermochemical Energy Storage. Solar Energy, 153, 11-24. [Google Scholar] [CrossRef]
|
|
[47]
|
Pardo, P., Deydier, A., Anxionnaz-Minvielle, Z., et al. (2014) A Review on High Temperature Thermochemical Heat Energy Storage. Renewable & Sustainable Energy Reviews, 32, 591-610. [Google Scholar] [CrossRef]
|
|
[48]
|
André, L., Abanades, S. and Flamant, G. (2016) Screen-ing of Thermochemical Systems Based on Solid-Gas Reversible Reactions for High Temperature Solar Thermal Energy Storage. Renewable and Sustainable Energy Reviews, 64, 703-715. [Google Scholar] [CrossRef]
|
|
[49]
|
Wentworth, W.E. and Chen, E. (1976) Simple Thermal Decom-position Reactions for Storage of Solar Thermal Energy. Solar Energy, 18, 205-214. [Google Scholar] [CrossRef]
|
|
[50]
|
Fahim, M.A. and Ford, J.D. (1983) Energy Storage Using the BaO2/BaO Reaction Cycle. Chemical Engineering Journal, 27, 21-28. [Google Scholar] [CrossRef]
|
|
[51]
|
Castillo, A. and Gayme, D.F. (2014) Grid-Scale Energy Storage Applications in Renewable Energy Integration: A Survey. Energy Conversion & Management, 87, 885-894. [Google Scholar] [CrossRef]
|