|
[1]
|
Xie, J., Zhang, L., Xing, H.Y., Bai, P.H., Liu, B., Wang, C.J., et al. (2020) Gas Sensing of Ordered and Disordered Structure SiO2 and Their Adsorption Behavior Based on Quartz Crystal Microbalance. Sensors and Actuators B: Chemical, 305, Article ID: 127479. [Google Scholar] [CrossRef]
|
|
[2]
|
林勇, 陈桦. 石英晶体谐振器生产工艺流程综述[J]. 电讯技术, 1997, 37(3): 15-20.
|
|
[3]
|
Besson, R.J. (1977) A New “Electrodeless” Resonator Design. 31st Annual Symposium on Frequency Control, Atlantic City, 1-3 June 1977, 147-152.
|
|
[4]
|
Nomura, T., Tanaka, F., Yamada, T. and Itoh, H. (1991) Electrodeless Piezoelectric quartz Crystal and Its Behaviour in Solutions. Analytica Chimica Acta, 243, 273-278. [Google Scholar] [CrossRef]
|
|
[5]
|
Yao, S.Z. (1990) On Equivalent Circuits of Piezoelectric Quartz Crystals in a Liquid and Liquid Properties: Part I. Theoretical Derivation of the Equivalent Circuit and Effects of Density and Viscosity of Liquids. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 293, 1-18.
[Google Scholar] [CrossRef]
|
|
[6]
|
Motohisa, K., Hatanaka, K.,Ohmori, T. and Ogi, H. (2006) Development of a High-Sensitive Electrodeless QCM Immunosensor. Symposium on Ultrasonic Electronics, 27, 267-268.
|
|
[7]
|
Rodahl, M., Höök, F., Krozer, A., Brzezinski, P. and Kasemo, B. (1995) Quartz Crystal Microbalance Setup for Frequency and Q-Factor Measurements in Gaseous and Liquid Environments. Review of Scientific Instruments, 66, 3924-3930. [Google Scholar] [CrossRef]
|
|
[8]
|
Thompson, M., Ballantyne, S.M., Cheran, L.E, Stevenson, A.C. and Lowe, C.R. (2003) Electromagnetic Excitation of High Frequency Acoustic Waves and Detection in the Liquid Phase. Analyst, 128, 1048-1055.
[Google Scholar] [CrossRef]
|
|
[9]
|
Ogi, H., Motohisa, K., Matsumoto, T., Mizugaki, T. and Hirao, M. (2006) Wireless Electrodeless Piezomagnetic Biosensor with an Isolated Nickel Oscillator. Biosensors and Bioelectronics, 21, 2001-2005.
[Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ogi, H., Nagai, H., Fukunishi, Y., Yanagida, T., Hirao, M. and Nishiyama, M. (2010) Multichannel Wireless-Electrodeless Quartz-Crystal Microbalance Immunosensor. Analytical Chemistry, 82, 3957-3962.
[Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ogi, H., Motohisa, K., Hatanaka, K., Ohmori, T., Hirao, M. and Nishiyama, M. (2007) High-Frequency Wireless and Electrodeless Quartz Crystal Microbalance Developed as Immunosensor. Japanese Journal of Applied Physics, 46, 4693. [Google Scholar] [CrossRef]
|
|
[12]
|
Noi, K., Iwata, A., Kato, F. and Ogi, H. (2019) Ultrahigh-Frequency, Wireless MEMS QCM Biosensor for Direct, Label-Free Detection of Biomarkers in a Large Amount of Contaminants. Analytical Chemistry, 91, 9398-9402.
[Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Nishikawa, S., Kato, F., Yanagida, T., et al. (2011) Development of MEMS Quartz Crystal Microbalance Biosensor with Electrodeless Embedded Crystal Resonator. Proceedings of the Symposium on Ultrasonic Electronics, 32, 359-360.
|
|
[14]
|
Kato, F., Ogi, H., Yanagida, T., Nishikawa, S., Hirao, M. and Nishiyama, M. (2012) Resonance Acoustic Microbalance with Naked-Embedded Quartz (RAMNE-Q) Biosensor Fabricated by Microelectromechanical-System Process. Biosensors & Bioelectronics, 33, 139-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Shen, D.Z., Huang, M.S., Nie, L.H. and Yao, S.Z. (1994) Equivalent Circuits of Piezoelectric Quartz Crystals in a Liquid and Liquid Properties: Part 2. A Unified Equivalent Circuit Model for Piezoelectric Sensors. Journal of Electroanalytical Chemistry, 371, 117-125. [Google Scholar] [CrossRef]
|
|
[16]
|
Mo, Z.H., Nie, L.H. and Yao, S.Z. (1991) A New Type of Piezoelectric Detector in Liquid: Part. 1. Theoretical Considerations and Measurements of Resonance Behavior Dependent on Liquid Properties. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 316, 79-91. [Google Scholar] [CrossRef]
|
|
[17]
|
Shen, D.Z., Zhu, W.H., Nie, L.H. and Yao, S.Z. (1993) Behavior of Series Piezoelectric Sensors in Electrolyte Solution: Part1. Theory. Analytica Chimica Acta, 276, 87-97. [Google Scholar] [CrossRef]
|
|
[18]
|
Nomura, T., Takada, K. and Mitsui, T. (1992) Use of a Piezoelectric Quartz Crystal as a Conductivity Detector and Its Analytical Application. Bunseki Kagaku, 41, 309-315. [Google Scholar] [CrossRef]
|
|
[19]
|
Ogi, H., Motoshisa, K., Matsumoto, T., Hatanaka, K. and Hirao, M. (2006) Isolated Electrodeless High-Frequency Quartz Crystal Microbalance for Immunosensors. Analytical Chemistry, 78, 6903-6909.
[Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ko, W., Jung, N., Lee, M., Yun, M. and Jeon, S. (2013) Electronic Nose Based on Multipatterns of ZnO Nanorods on a Quartz Resonator with Remote Electrodes. Acs Nano, 7, 6685-6690. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Nomura, T. and Yamada, T. (1993) Electrode-Separated Piezoelectric Crystal Oscillator and Method for Measurement Using the Electrode-Separated Piezoelectric Crystal Oscillator. U.S. Patent No. 5235238.
|
|
[22]
|
Huang, M., Shen, D. and Yang, M. (2001) Effects of Longitudinal Wave on the Resonance Behavior of an Electrode-Separated Piezoelectric Sensor in Liquids. Analytica Chimica Acta, 440, 109-118.
[Google Scholar] [CrossRef]
|
|
[23]
|
Kunze, A., Zäch, M., Svedhem, S. and Kasemo, B. (2011) Electrodeless QCM-D for Lipid Bilayer Applications. Biosensors and Bioelectronics, 26, 1833-1838. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chen, D.Q., Zhang, K.H., Zhou, H., Fan, G.K., Wang, Y., Li, G., et al. (2018) A Wireless-Electrodeless Quartz Crystal Microbalance with Dissipation DMMP Sensor. Sensors and Actuators B: Chemical, 261, 408-417.
[Google Scholar] [CrossRef]
|
|
[25]
|
Thompson, R.B. (1990) Physical Principles of Measurements with EMAT Transducers. Physical Acoustics, 19, 157-200. [Google Scholar] [CrossRef]
|
|
[26]
|
Gaerttner, M.R., Wallace, W.D. and Maxfield, B.W. (1969) Experiments Relating to the Theory of Magnetic Direct Generation of Ultrasound in Metals. Physical Review, 184, 702-704. [Google Scholar] [CrossRef]
|
|
[27]
|
Sindi, H.S., Stevenson, A.C. and Lowe, C.R. (2001) A Strategy for Chemical Sensing Based on Frequency Tunable Acoustic Devices. Analytical Chemistry, 73, 1577-1586. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Randall, R.H., Rose, F.C. and Zener, C. (1939) Intercrystalline Thermal Currents as a Source of Internal Friction. Physical Review, 56, 343-348. [Google Scholar] [CrossRef]
|
|
[29]
|
Houck, J.R., Bohm, H.V., Maxfield, B.W. and Wilkins, J.W. (1967) Direct Electromagnetic Generation of Acoustic Waves. Physical Review Letters, 19, 224-227. [Google Scholar] [CrossRef]
|
|
[30]
|
Quinn, J.J. (1967) Electromagnetic Generation of Acoustic Waves and the Surface Impedance of Metals. Physics Letters A, 25, 522-523. [Google Scholar] [CrossRef]
|
|
[31]
|
Vasilescu, A., Ballantyne, S.M., Cheran, L.E. and Thompson, M. (2005) Surface Properties and Electromagnetic Excitation of a Piezoelectric Gallium Phosphate Biosensor. Analyst, 130, 213-220. [Google Scholar] [CrossRef]
|
|
[32]
|
纪哲, 骆嘉龄. 非接触式超声测厚的研究与开发[J]. 试验技术与试验机, 1998, 38(3): 8-10.
|
|
[33]
|
Ogi, H. (1997) Field Dependence of Coupling Efficiency between Electromagnetic Field and Ultrasonic Bulk Waves. Journal of Applied Physics, 82, 3940-3949. [Google Scholar] [CrossRef]
|
|
[34]
|
Chen, D.Q., Li, H.Y., Su, X.F., Li, N., Wang, Y., Carl Stevenson, A., et al. (2019) A Wireless-Electrodeless Quartz Crystal Microbalance Method for Non-Enzymatic Glucose Monitoring. Sensors and Actuators B: Chemical, 287, 35-41. [Google Scholar] [CrossRef]
|
|
[35]
|
Zhou, L., Nakamura, N., Nagakubo, A. and Ogi, H. (2019) Highly Sensitive Hydrogen Detection Using Curvature Change of Wireless-Electrodeless Quartz Resonators. Applied Physics Letters, 115, Article ID: 171901.
[Google Scholar] [CrossRef]
|
|
[36]
|
Si, S.H., Huang, K.L., Lu, C.Y. and Yao, S.-Z. (1999) Electrodeless Piezoelectric Quartz Crystal Sensor for Determination of Total Urinary Reducing Sugar. Microchemical Journal, 62, 328-335. [Google Scholar] [CrossRef]
|
|
[37]
|
Egughi, K., Hinoue, T. and Nomura, T. (2004) Determination of Phosphate ion by Adhesion of a Precipitate of Ammonium Phosphomolybdate onto a One-Electrode-Separated Piezoelectric Quartz Crystal in a Flow System. Bunseki Kagaku, 53, 419-427.
|
|
[38]
|
Fung, Y.S., Wong, C.C.W., Choy, J.T.S. and Sze, K.L. (2008) Determination of Sulphate in Water by Flow-Injection Analysis with Electrode-Separated Piezoelectric Quartz Crystal Sensor. Sensors and Actuators. B: Chemical, 130, 551-560. [Google Scholar] [CrossRef]
|
|
[39]
|
Jesus, D., Neves, C.A. and Lago, C.L.D. (2001) Improving the Sensitivity of Electrode-Separated Piezoelectric Quartz Crystal Sensor for Copper(II) Ions by Immobilization of the N-2-Aminoethyl-3-Aminopropylsilane Group. Journal of the Brazilian Chemical Societyr, 12, 123-128. http://dx.doi.org/10.1590/S0103-50532001000100017 [Google Scholar] [CrossRef]
|
|
[40]
|
Bao, S. and Nomura, T. (2002) Silver-Selective Sensor Using an Electrode-Separated Piezoelectric Quartz Crystal Modified with a Chitosan Derivative. Analytical Sciences, 18, 881-885.
|
|
[41]
|
Liu, D.Z., Lai, Y.Z., Nie, L.H. and Yao, S.Z. (1995) Rapid Detection of l -Glutamic Acid Using a Series-Electrode Piezoelectric Quartz Crystal Sensor. Analytica Chimica Acta, 313, 229-236.
[Google Scholar] [CrossRef]
|
|
[42]
|
Kato, F., Ogi, H., Yanagida, T., Nishikawa, S., Nishiyama, M. and Hirao, M. (2011) High-Frequency Electrodeless Quartz Crystal Microbalance Chip with a Bare Quartz Resonator Encapsulated in a Silicon Microchannel. Japanese Journal of Applied Physics, 50, Article ID: 07HD03. [Google Scholar] [CrossRef]
|
|
[43]
|
Hao, R.Z., Song, H.B., Zuo, G.M., Yang, R.F., Wei, H.P., Wang, D.B, et al. (2011) DNA Probe Functionalized QCM Biosensor Based on Gold Nanoparticle Amplification for Bacillus Anthracis Detection. Biosensors & Bioelectronics, 26, 3398-3404. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Wang, L.J., Wei, Q.S., et al. (2008) The Escherichia Coli O157:H7 DNA Detection on a Gold Nanoparticle-Enhanced Piezoelectric Biosensor. Science Bulletin, 53, 1175-1184. [Google Scholar] [CrossRef]
|
|
[45]
|
Ogi, H., Yanagida, T., Hirao, M. and Nishiyama, M. (2011) Replacement-Free Mass-Amplified Sandwich Assay with 180-MHz Electrodeless Quartz-Crystal Microbalance Biosensor. Biosensors and Bioelectronics, 26, 4819-4822.
[Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Noi, K., Iijima, M., Kuroda, S. and Ogi, H. (2019) Ultrahigh-Sensitive Wireless QCM with Bio-Nanocapsules. Sensors and Actuators B: Chemical, 293, 59-62. [Google Scholar] [CrossRef]
|
|
[47]
|
Su, X., Chen, D., Li, N., Stevenson, A.C., Li, G. and Hu, R.F. (2020) A Wireless Electrode-Free QCM-D in a Multi-Resonance Mode for Volatile Organic Compounds Discrimination. Sensors and Actuators A: Physical, 305, Article ID: 111938. [Google Scholar] [CrossRef]
|
|
[48]
|
Shen, D.Z., Huang, M.H., Wang, F., Yang, M.S. (2005) Impedance Analysis of an Electrode-Separated Piezoelectric Sensor as a Surface-Monitoring Technique for Gelatin Adsorption on Quartz Surface. Journal of Colloid and Interface Science, 281, 398-409. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Shagawa, T., Torii, H., Kato, F., Ogi, H. and Hirao, M. (2015) Viscoelasticity Evolution in Protein Layers during Binding Reactions Evaluated Using High-Frequency Wireless and Electrodeless Quartz Crystal Microbalance Biosensor without Dissipation. Japanese Journal of Applied Physics, 54, Article ID: 096601.
[Google Scholar] [CrossRef]
|
|
[50]
|
Ko, W. and Jeon, S. (2014) An Electrodeless Quartz Crystal Resonator Integrated with UV/Vis Spectroscopy for the Investigation of the Photodecomposition of Methylene Blue. Sensors and Actuators B: Chemical, 193, 774-777.
[Google Scholar] [CrossRef]
|
|
[51]
|
Zhang, P., Kong, L.Q., Wang, H.H., Kang, Q. and Shen, D.Z. (2017) Combination of an Electrodeless Quartz Crystal Microbalance and Spectrometric Methods and Application in Monitoring Adsorption Kinetics of Iodine on Metal-Organic Frameworks Films. Sensors and Actuators B: Chemical, 238, 744-753.
[Google Scholar] [CrossRef]
|
|
[52]
|
Larsson, E.M., Edvardsson, M.E.M., Langhammer, C., Zorić, I. and Kasemo, B. (2009) A Combined Nanoplasmonic and Electrodeless Quartz Crystal Microbalance Setup. Review of Scientific Instruments, 80, Article ID: 125105.
[Google Scholar] [CrossRef] [PubMed]
|