|
[1]
|
Bridgewood, C., Sharif, K., Sherlock, J., Watad, A. and McGonagle, D. (2020) Interleukin-23 Pathway at the Enthesis: The Emerging Story of Enthesitis in Spondyloarthropathy. Immunological Reviews, 294, 27-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Wellcome Trust Case Control Consortium and the Australo-Anglo-American Spondylitis Consortium (TASC) (2007) Association Scan of 14,500 Nonsynonymous SNPs in Four Diseases Identifies Autoimmunity Variants. Nature Genetics, 39, 1329-1337. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Uddin, M., Codner, D., Hasan, S.M., Scherer, S.W., O’Rielly, D.D and Rahman, P. (2015) Integrated Genomics Identifies Convergence of Ankylosing Spondylitis with Global Immune Mediated Disease Pathways. Scientific Reports, 5, Article No. 10314. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Danoy, P., Pryce, K., Hadler, J., Bradbury, L.A., Farrar, C., Pointon, J., et al. (2010) Association of Variants at 1q32 and STAT3 with Ankylosing Spondylitis Suggests Genetic Overlap with Crohn’s Disease. PLoS Genetics, 6, e1001195. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Brown, M.A., Kenna, T. and Wordsworth, B.P. (2016) Genetics of Ankylosing Spondylitis—Insights into Pathogenesis. Nature Reviews Rheumatology, 12, 81-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
International Genetics of Ankylosing Spondylitis Consortium (2013) Identification of Multiple Risk Variants for Ankylosing Spondylitis through High-Density Genotyping of Immune-Related Loci. Nature Genetics, 45, 730-738. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ward, M.M., Deodhar, A., Gensler, L.S., Dubreuil, M., Yu, D., Khan, M.A., et al. (2019) 2019 Update of the American College of Rheumatology/Spondylitis Association of America/Spondyloarthritis Research and Treatment Network Recommendations for the Treatment of Ankylosing Spondylitis and Nonradiographic Axial Spondyloarthritis. Arthritis & Rheumatology, 71, 1599-1613. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Baeten, D., Sieper, J., Braun, J., Baraliakos, X., Dougados, M., Emery, P., et al. (2015) Secukinumab, an Interleukin-17A Inhibitor, in Ankylosing Spondylitis. New England Journal of Medicine, 373, 2534-2548. [Google Scholar] [CrossRef]
|
|
[9]
|
Braun, J., Baraliakos, X., Deodhar, A., Baeten, D., Sieper, J., Emery, P., et al. (2017) Effect of Secukinumab on Clinical and Radiographic outcomes in Ankylosing Spondylitis: 2-Year Results from the Randomised Phase III MEASURE 1 Study. Annals of the Rheumatic Diseases, 76, 1070-1077. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Baraliakos, X., Kivitz, A.J., Deodhar, A.A., Braun, J., Wei, J.C., Maria Delicha, E., et al. (2018) Long-Term Effects of Interleukin-17A Inhibition with Secukinumab in Active Ankylosing Spondylitis: 3-Year Efficacy and Safety Results from an Extension of the Phase 3 MEASURE 1 Trial. Clinical and Experimental Rheumatology, 36, 50-55.
|
|
[11]
|
Marzo-Ortega, H., Sieper, J., Kivitz, A., Blanco, R., Cohen, M., Martin, R., et al. (2017) Secukinumab and Sustained Improvement in Signs and Symptoms of Patients with Active Ankylosing Spondylitis through Two Years: Results from a Phase III Study. Arthritis Care & Research, 69, 1020-1029. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Marzo-Ortega, H., Sieper, J., Kivitz, A., Blanco, R., Cohen, M., Delicha, E.-M., et al. (2017) Secukinumab Provides Sustained Improvements in the Signs and Symptoms of Active Ankylosing Spondylitis with High Retention Rate: 3-Year Results from the Phase III Trial, MEASURE 2. RMD Open, 3, e000592. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
van der Heijde, D., Cheng-Chung, W.J., Dougados, M., Mease, P., Maksymowych, W.P., Van den Bosch, F., et al. (2018) Ixekizumab, an Interleukin-17A Antagonist in the Treatment of Ankylosing Spondylitis or Radiographic Axial Spondyloarthritis in Patients Previously Untreated with Biological Disease-Modifying Anti-Rheumatic Drugs (COAST-V): 16 Week Results of a Phase 3 Randomised, Double-Blind, Active-Controlled and Placebo-Controlled Trial. Lancet, 392, 2441-2451. [Google Scholar] [CrossRef]
|
|
[14]
|
Deodhar, A., Poddubnyy, D., Pacheco-Tena, C., Salvarani, C., Lespessailles, E., Rahman, P., et al. (2019) Efficacy and Safety of Ixekizumab in the Treatment of Radiographic Axial Spondyloarthritis: Sixteen-Week Results From a Phase III Randomized, Double-Blind, Placebo-Controlled Trial in Patients with Prior Inadequate Response to or Intolerance of Tumor Necrosis Factor Inhibitors. Arthritis & Rheumatology, 71, 599-611. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Mease, P., Walsh, J.A., Baraliakos, X., Inman, R., de Vlam, K., Wei, J.C.-C., et al. (2019) Translating Improvements with Ixekizumab in Clinical Trial Outcomes into Clinical Practice: ASAS40, Pain, Fatigue, and Sleep in Ankylosing Spondylitis. Rheumatology and Therapy, 6, 435-450. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Dougados, M., Wei, J.C., Landewe, R., Sieper, J., Baraliakos, X., Van den Bosch, F., et al. (2020) Efficacy and Safety of Ixekizumab through 52 Weeks in Two Phase 3, Randomised, Controlled Clinical Trials in Patients with Active Radiographic Axial Spondyloarthritis (COAST-V and COAST-W). Annals of the Rheumatic Diseases, 79, 176-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Deodhar, A., van der Heijde, D., Gensler, L.S., Kim, T.H., Maksymowych, W.P., Østergaard, M., et al. (2020) Ixekizumab for Patients with Non-Radiographic Axial Spondyloarthritis (COAST-X): A Randomised, Placebo-Controlled Trial. Lancet, 395, 53-64. [Google Scholar] [CrossRef]
|
|
[18]
|
van der Heijde, D., Gensler, L.S., Deodhar, A., Baraliakos, X., Poddubnyy, D., Kivitz, A., et al. (2020) Dual Neutralisation of Interleukin-17A and Interleukin-17F with bimekizumab in Patients with Active Ankylosing Spondylitis: Results from a 48-Week Phase IIb, Randomised, Double-Blind, Placebo-Controlled, Dose-Ranging Study. Annals of the Rheumatic Diseases, 79, 595-604. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Deodhar, A., Gensler, L.S., Sieper, J., Clark, M., Calderon, C., Wang, Y., et al. (2019) Three Multicenter, Randomized, Double-Blind, Placebo-Controlled Studies Evaluating the Efficacy and Safety of Ustekinumab in Axial Spondyloarthritis. Arthritis & Rheumatology, 71, 258-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Baeten, D., Ostergaard, M., Wei, J.C., Sieper, J., Järvinen, P., Tam, L.-S., et al. (2018) Risankizumab, an IL-23 Inhibitor, for Ankylosing Spondylitis: Results of a Randomised, Double-Blind, Placebo-Controlled, Proof-of-Concept, Dose-Finding Phase 2 Study. Annals of the Rheumatic Diseases, 77, 1295-1302. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
van Tok, M.N., Na, S., Lao, C.R., Alvi, M., Pots, D., van de Sande, M.G.H., et al. (2018) The Initiation, but Not the Persistence, of Experimental Spondyloarthritis Is Dependent on Interleukin-23 Signaling. Frontiers in Immunology, 9, 1550. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
van Tok, M.N., van Duivenvoorde, L.M., Kramer, I., Ingold, P., Pfister, S., Roth, L., et al. (2019) Interleukin-17A Inhibition Diminishes Inflammation and New Bone Formation in Experimental Spondyloarthritis. Arthritis & Rheumatology, 71, 612-625. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Sieper, J., Poddubnyy, D. and Miossec, P. (2019) The IL-23-IL-17 Pathway as a Therapeutic Target in Axial Spondyloarthritis. Nature Reviews Rheumatology, 15, 747-757. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sherlock, J.P., Joyce-Shaikh, B., Turner, S.P., Chao, C.C., Sathe, M., Grein, J., et al. (2012) IL-23 Induces Spondyloarthropathy by Acting on ROR-Gammat+ CD3+CD4-CD8− Entheseal Resident T Cells. Nature Medicine, 18, 1069-1076. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ciccia, F., Guggino, G., Rizzo, A., Saieva, L., Peralta, S., Giardina, A.R., et al. (2015) Type 3 Innate Lymphoid Cells Producing IL-17 and IL-22 Are Expanded in the Gut, in the Peripheral Blood, Synovial Fluid and Bone Marrow of Patients with Ankylosing Spondylitis. Annals of the Rheumatic Diseases, 74, 1739-1747. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Crellin, N.K., Trifari, S., Kaplan, C.D., Cupedo, T. and Spits, H. (2010) Human NKp44+IL-22+ Cells and LTi-Like Cells Constitute a Stable RORC+ Lineage Distinct from Conventional Natural Killer Cells. Journal of Experimental Medicine, 207, 281-290. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Blijdorp, I., Menegatti, S., van Mens, L., van de Sande, M., Chen, S., Hreggvidsdottir, H.S., et al. (2019) Expansion of Interleukin-22- and Granulocyte-Macrophage Colony-Stimulating Factor-Expressing, but Not Interleukin-17A-Expressing, Group 3 Innate Lymphoid Cells in the Inflamed Joints of Patients with Spondyloarthritis. Arthritis & Rheumatology, 71, 392-402. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Al-Mossawi, M.H., Chen, L., Fang, H., Ridley, A., de Wit, J., Yager, N., et al. (2017) Unique Transcriptome Signatures and GM-CSF Expression in Lymphocytes from Patients with Spondyloarthritis. Nature Communications, 8, Article No. 1510. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Shi, H., Chen, L., Ridley, A., Zaarour, N., Brough, I., Caucci, C., et al. (2020) GM-CSF Primes Proinflammatory Monocyte Responses in Ankylosing Spondylitis. Frontiers in Immunology, 11, 1520. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ciccia, F., Guggino, G., Zeng, M., Thomas, R., Ranganathan, V., Rahman, A., et al. (2018) Proinflammatory CX3CR1+CD59+Tumor Necrosis Factor-Like Molecule 1A+Interleukin-23+ Monocytes Are Expanded in Patients with Ankylosing Spondylitis and Modulate Innate Lymphoid Cell 3 Immune Functions. Arthritis & Rheumatology, 70, 2003-2013. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Gracey, E., Qaiyum, Z., Almaghlouth, I., Lawson, D., Karki, S., Avvaru, N., et al. (2016) IL-7 Primes IL-17 in Mucosal-Associated Invariant T (MAIT) Cells, Which Contribute to the Th17-Axis in Ankylosing Spondylitis. Annals of the Rheumatic Diseases, 75, 2124-2132. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Toussirot, E., Laheurte, C., Gaugler, B., Gabriel, D. and Saas, P. (2018) Increased IL-22- and IL-17A-Producing Mucosal-Associated Invariant T Cells in the Peripheral Blood of Patients with Ankylosing Spondylitis. Frontiers in Immunology, 9, 1610. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Reinhardt, A., Yevsa, T., Worbs, T., Lienenklaus, S., Sandrock, I., Oberdörfer, L., et al. (2016) Interleukin-23-Dependent Gamma/Delta T Cells Produce Interleukin-17 and Accumulate in the Enthesis, Aortic Valve, and Ciliary Body in Mice. Arthritis & Rheumatology, 68, 2476-2486. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Cuthbert, R.J., Watad, A., Fragkakis, E.M., Dunsmuir, R., Loughenbury, P., Khan, A., et al. (2019) Evidence That Tissue Resident Human Enthesis Gammadelta T-Cells Can Produce IL-17A Independently of IL-23R Transcript Expression. Annals of the Rheumatic Diseases, 78, 1559-1565. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Watad, A., Rowe, H., Russell, T., Zhou, Q., Anderson, L.K., Khan, A., et al. (2020) Normal Human Enthesis Harbours Conventional CD4+ and CD8+ T Cells with Regulatory Features and Inducible IL-17A and TNF Expression. Annals of the Rheumatic Diseases, 79, 1044-1054. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Gracey, E., Hromadova, D., Lim, M., Qaiyum, Z., Zeng, M., Yao, Y.C., et al. (2020) TYK2 Inhibition Reduces Type 3 Immunity and Modifies Disease Progression in Murine Spondyloarthritis. Journal of Clinical Investigation, 130, 1863-1878. [Google Scholar] [CrossRef]
|
|
[37]
|
Zheng, G., Xie, Z., Wang, P., Li, J., Li, M., Cen, S., et al. (2019) Enhanced Osteogenic Differentiation of Mesenchymal Stem Cells in Ankylosing Spondylitis: A Study Based on a Three-Dimensional Biomimetic Environment. Cell Death & Disease, 10, Article No. 350. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Liu, C.H., Raj, S., Chen, C.H., Hung, K.H., Chou, C.-T., Chen, I.-H., et al. (2019) HLA-B27-Mediated Activation of TNAP Phosphatase Promotes Pathogenic Syndesmophyte Formation in Ankylosing Spondylitis. Journal of Clinical Investigation, 129, 5357-5373. [Google Scholar] [CrossRef]
|
|
[39]
|
Li, X., Chen, S., Hu, Z., Chen, D., Wang, J., Li, Z., et al. (2020) Aberrant Upregulation of CaSR Promotes Pathological New Bone Formation in Ankylosing Spondylitis. EMBO Molecular Medicine, 12, e12109. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Liao, C., Zhang, C., Jin, L. and Yang, Y. (2020) IL-17 Alters the Mesenchymal Stem Cell Niche towards Osteogenesis in Cooperation with Osteocytes. Journal of Cellular Physiology, 235, 4466-4480. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Jo, S., Wang, S.E., Lee, Y.L., Kang, S., Lee, B., Han, J., et al. (2018) IL-17A Induces Osteoblast Differentiation by Activating JAK2/STAT3 in Ankylosing Spondylitis. Arthritis Research & Therapy, 20, Article No. 115. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Liu, Z., Huang, F., Luo, G., Wang, Y., Du, R., Sun, W., et al. (2020) miR-214 Stimulated by IL-17A Regulates Bone Loss in Patients with Ankylosing Spondylitis. Rheumatology, 59, 1159-1169. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Klingberg, E., Lorentzon, M., Gothlin, J., Mellstrom, D., Geijer, M., Ohlsson, C., et al. (2013) Bone Microarchitecture in Ankylosing Spondylitis and the Association with Bone Mineral Density, Fractures, and Syndesmophytes. Arthritis Research & Therapy, 15, Article No. R179. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Bridgewood, C., Watad, A., Russell, T., Palmer, T.M., Marzo-Ortega, H., Khan, A., et al. (2019) Identification of Myeloid Cells in the Human Enthesis as the Main Source of Local IL-23 Production. Annals of the Rheumatic Diseases, 78, 929-933. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Xu, J., Li, J., Hu, Y., Dai, K., Gan, Y., Zhao, J., et al. (2020) IL-23, but Not IL-12, Plays a Critical Role in Inflammation-Mediated Bone Disorders. Theranostics, 10, 3925-3938. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Xu, J., Wang, Y., Li, J., Zhang, X., Geng, Y., Huang, Y., et al. (2016) IL-12p40 Impairs Mesenchymal Stem Cell-Mediated Bone Regeneration via CD4+ T Cells. Cell Death & Differentiation, 23, 1941-1951. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
El-Zayadi, A.A., Jones, E.A., Churchman, S. M., Baboolal, T.G., Cuthbert, R.J., El-Jawhari, J.J., et al. (2017) Interleukin-22 Drives the Proliferation, Migration and Osteogenic Differentiation of Mesenchymal Stem Cells: A Novel Cytokine That Could Contribute to New Bone Formation in Spondyloarthropathies. Rheumatology, 56, 488-493. [Google Scholar] [CrossRef] [PubMed]
|