|
[1]
|
国内聚酯触底反弹节节攀升产能扩张[J]. 乙醛醋酸化工, 2019(8): 42.
|
|
[2]
|
孙小甫. PET共聚酯的制备及液相增黏研究[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2019.
|
|
[3]
|
萧斌, 王丽苹, 杨先贵, 王公应. 聚酯催化剂的研究进展[J]. 化学试剂, 2010, 32(3): 223-226.
|
|
[4]
|
Aharoni, S.M. (1995) Synthesis of Poly(epsilon-caprolactam) and Poly(ethyleneterephthalate) Star Polymers. International Journal of Polymeric Materials, 29, 119-132. [Google Scholar] [CrossRef]
|
|
[5]
|
王晓平, 吴飞. PET生产工艺参数对产品质量的影响[J]. 合成树脂及塑料, 2006(3): 36-39+59.
|
|
[6]
|
Aharoni, S.M. (1998) The Cause of the Grey Discoloration of PET Prepared by the Use of Antimony-Catalysts. Polymer Engineering & Science, 38, 1039-1047. [Google Scholar] [CrossRef]
|
|
[7]
|
曹善文, 李朝晖, 付乐军. PET缩聚催化剂的发展及展望[J]. 聚酯工业, 2004, 17(5): 5-9.
|
|
[8]
|
Mannk, K., Davison, K. and Colombo, M. (2006) A Antimony Trioxide-Induced Apoptosis Is Dependent on SEKI/JNK Signaling. Toxicology Letters, 160, 158-170. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
He, M. and Yang, J. (1999) Effects of Different Forms of Anti-mony on Rice during the Period of Germination and Growth and Antimony Concentration in Rice Tissue. Science of the Total Environment, 243-244, 149-155. [Google Scholar] [CrossRef]
|
|
[10]
|
Poon, R., Chu, I., Lecavalier, P., Valli, V.E., Foster, W., Gupta, S. and Thomas, B. (1998) Effects of Antimony on Rats Following 90-Day Exposure via Drinking Water. Food and Chemical Toxicology, 36, 21-35. [Google Scholar] [CrossRef]
|
|
[11]
|
Mason, J.D. (1992) Catalyst System and Process for Pre-paring Polyethylene Terephthalate. US Patent No. 07/705871.
|
|
[12]
|
顾宇辉, 古宏晨, 徐宏, 等. PET聚酯缩聚用改性二氧化钛催化剂的制备研究[J]. 合成纤维, 2004, 35(4): 25-27.
|
|
[13]
|
Tsai, C.-J., Chang, W.-C., Chen, C.-H., Lu, H.-Y. and Chen, M. (2008) Synthesis and Characterization of Polyesters Derived from Succinic Acid, Ethylene Glycol and 1,3-Propanediol. European Polymer Journal, 44, 2339-2347.
https://www.elsevier.com/locate/europolj [Google Scholar] [CrossRef]
|
|
[14]
|
Karayannidis, G.P., Roupakias, C.P., Bikiaris, D.N. and Achilias, D.S. (2003) Study of Various Catalysts in the Synthesis of Poly(propylene terephthalate) and Mathematical Modeling of the Esterification Reaction. Polymer, 44, 931-942. https://www.journals.elsevier.com/polymer [Google Scholar] [CrossRef]
|
|
[15]
|
Tung ying, K., Jihchen, H. and Chien-shium, L. (1999) Poly(1,3-propyleneterephthalate). US Patent No. 5/872204.
|
|
[16]
|
黄兴山. PET缩聚新型催化剂-锗催化剂[J]. 技术创新, 2003, 3(3): 22-23.
|
|
[17]
|
刘斌. 新型PET缩聚用钛系催化剂的合成及应用性能的研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2018.
|
|
[18]
|
唐永良. 聚对苯二甲酸乙二醇合成催化剂研究进展[J]. 合成纤维, 2006, 35(7): 19-22.
|
|
[19]
|
陈君, 黄宝铨, 陈婷, 陈庆华, 肖荔人, 钱庆荣. 聚对苯二甲酸丙二醇酯的研究进展[J]. 精细石油化工进展, 2013, 14(1): 49-54.
|
|
[20]
|
Zimmermann, H. (1962) Chemical Studies on Fibre Forming Polyesters Thermal Sta-bilization of Polyethylene Terephthalate. Faserforschung and Textilechnik, 13, 481-490.
|
|
[21]
|
廉谷博善. 纤维化合物中的触媒作用[J]. 高分子论文集, 1978(35): 787-789.
|
|
[22]
|
Hidalgo, P., Méndez, B. and Piqueras, J. (2008) Sn Doped GeO2 Nanowires with Wave Guiding Behavior. Nanotechnology, 19, Article ID: 455705. https://iopscience.iop.org/article/10.1088/0957-4484/19/45/455705 [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Qiu, X., Yu, L, Zhang, L., Liao, L., Qin, J. and Yang, J. (2005) Expression of MyoD Gene in Li Myoblast Cells Induced by GeO2. Chinese Journal of Clinical Anatomy, 23, 14-16.
|
|
[24]
|
Lorenz, H., Zhao, Q., Turner, S., Lebedev, O.I., Van Tendeloo, G., Klötzer, B., Penner, S., et al. (2010) Preparation and Structural Characterization of SnO2 and GeO2 Methanol Steam Reforming Thin Film Model Catalysts by (HR) TEM. Materials Chemistry and Physics, 122, 623-629.
https://www.journals.elsevier.com/materials-chemistry-and-physics [Google Scholar] [CrossRef]
|
|
[25]
|
Lu, Q., Gao, F., Li, Y., Zhou, Y. and Zhao, D. (2002) Synthesis of Germanium Oxide Mesostructures with a New Intermediate State. Microporous and Mesoporous Materials, 56, 219-225.
https://www.journals.elsevier.com/microporous-and-mesoporous-materials [Google Scholar] [CrossRef]
|
|
[26]
|
Chang, T.C., Yan, S.T., Hsu, C.H., Tang, M.T., Lee, J.F., Tai, Y.H., Sze, S.M., et al. (2004) A Distributed Charge Storage with GeO2 Nanodots. Applied Physics Letters, 84, 2581-2583. [Google Scholar] [CrossRef]
|
|
[27]
|
Atuchin, V.V., Gavrilova, T.A., Gromilov, S.A., Kostrovsky, V.G., Pokrovsky, L.D., Troitskaia, I.B., Ramana, C.V., et al. (2009) Low-Temperature Chemical Synthesis and Micro-structure Analysis of GeO2 Crystals with α-Quartz Structure. Crystal Growth & Design, 9, 1829-1832. [Google Scholar] [CrossRef]
|
|
[28]
|
郭展郡. 化学气相沉积技术与材料制备[J]. 低碳世界, 2017(27): 288-289.
|
|
[29]
|
Jiang, Z.X., Zhang, Y., Huang, H.H., Liu, X.S., Yuan, C.L., Gu, G. and Ye, S.L. (2014) Morpholo-gy-Engineered Strain Transformation in Ge/GeO2 Core/Shell Nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 60, 100-103. https://www.journals.elsevier.com/physica-e-low-dimensional-systems-and-nanostructures [Google Scholar] [CrossRef]
|
|
[30]
|
Bayanov, V.A., Rakhimova, O.V., Rakhimov, V.I. and Syomov, M.P. (2016) Spectrophotometric Differential Kinetic Method for the Determination of Germanium and Silicon in the Presence of Each Other in the GeO2-SiO2 Systems. Glass Physics and Chemistry, 42, 214-217. [Google Scholar] [CrossRef]
|
|
[31]
|
Shi, R., Zhang, R., Chen, X., Yang, F., Zhao, Q., Yu, J., Yang, H., et al. (2011) Controllable Growth of GeO2 Nanowires with the Cubic and Hexagonal Phases and Their Photolumi-nescence. Journal of Crystal Growth, 336, 6-13.
https://www.sciencedirect.com/science/article/pii/S0022024811007688?via%3Dihub [Google Scholar] [CrossRef]
|
|
[32]
|
Armelao, L., Heigl, F., Kim, P.-S.G., Rosenberg, R.A., Regier, T.Z. and Sham, T.-K. (2012) Visible Emission from GeO2 Nanowires: Site-Specific Insights via X-Ray Excited Optical Luminescence. The Journal of Physical Chemistry C, 116, 14163-14169. [Google Scholar] [CrossRef]
|
|
[33]
|
王高潮. 材料科学与工程导论[M]. 北京: 机械工业出版社, 2006.
|
|
[34]
|
Bose, N., Taki, G.S., Basu, M. and Mukherjee, S. (2014) GeO2 Nanorods: Synthesis, Structural and Photoluminescence Properties. Materials Research Express, 1, Article ID: 045013.
https://iopscience.iop.org/article/10.1088/2053-1591/1/4/045013 [Google Scholar] [CrossRef]
|
|
[35]
|
Song, H., Zhao, B., Yan, S., Li, K. and Shi, Y. (2017) Porous Nano-Structured GeO2 for High Performance Lithium Storage. Journal of Nanoscience & Nanotechnology, 17, 9036-9041.
https://www.ingentaconnect.com/content/asp/jnn/2017/00000017/00000012/art00047 [Google Scholar] [CrossRef]
|
|
[36]
|
黄剑锋. 高等学校教材溶胶-凝胶原理与技术[M]. 北京: 化学工业出版社, 2005.
|
|
[37]
|
Kojima, K., Yamauchi, K., Sanada, T. and Wada, N. (2016) Second-Order Nonlinear Green Light Emission in Sol-Gel Derived Opaque ZnO-GeO2 Oxides by Near-Infrared Laser Irradiation. Journal of the Ceramic Society of Japan, 124, 177-179. [Google Scholar] [CrossRef]
|
|
[38]
|
Jing, C., Hou, J. and Xu, X. (2008) Fabrication and Optical Characteristics of Thick GeO2 Sol-Gel Coatings. Optical Materials, 30, 857-864. https://www.sciencedirect.com/science/article/abs/pii/S0925346707001097 [Google Scholar] [CrossRef]
|
|
[39]
|
Javadi, M., Yang, Z. and Veinot, J.G.C. (2014) Surfactant-Free Synthesis of GeO2 Nanocrystals with Controlled Morphologies. Chemical Communications, 50, 6101-6104. [Google Scholar] [CrossRef]
|
|
[40]
|
杨文胜, 高明远, 白玉白, 等. 纳米材料与生物技术[M]. 北京: 化学工业出版社, 2005: 61-62.
|
|
[41]
|
Chiu, Y.-W. and Huang, M.H. (2009) Formation of Hexabranched GeO2 Nanopar-ticles via a Reverse Micelle System. The Journal of Physical Chemistry C, 113, 6056-6060. [Google Scholar] [CrossRef]
|
|
[42]
|
Zhang, W., Qiao, X. and Chen, J. (2008) Formation of Silver Nanoparticles in SDS Inverse Microemulsions. Materials Chemistry and Physics, 109, 411-416. [Google Scholar] [CrossRef]
|
|
[43]
|
Sugimoto, T. and Kimijima, K. (2003) New Approach to the Formation Mechanism of AgCl Nanoparticles in a Reverse Micelle System. The Journal of Physical Chemistry B, 107, 10753-10759. [Google Scholar] [CrossRef]
|
|
[44]
|
Yuasa, M., Masaki, T., Kida, T., Shimanoe, K. and Yamazoe, N. (2009) Nano-Sized PdO Loaded SnO2 Nanoparticles by Reverse Micelle Method for Highly Sensitive CO Gas Sensor. Sensors and Actuators B: Chemical, 136, 99-104. [Google Scholar] [CrossRef]
|