学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
生命科学
计算生物学
Vol. 1 No. 2 (December 2011)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
癌症差异表达基因的似然比–置换检验法
Likelihood Ratio-Permutation Test of Differentially Expressed Cancer-Related Genes
DOI:
10.12677/hjcb.2011.12004
,
PDF
,
HTML
,
,
被引量
作者:
李靖喆
,
张帼奋
*
:浙江大学数学系,杭州
关键词:
DNA微阵列(基因芯片)
;
基因选择
;
似然比检验
;
置换检验
DNA Microarray (Gene Chips); Gene Selection; Likelihood Ratio Test; Permutation Test
摘要:
癌症的差异表达基因具有其特殊性,这种特殊性给基因选择带来了新的挑战。许多统计学家提出了新的统计量和检验方法,不断地在这一领域取得突破和完善。本文将在借鉴这些已有研究成果的基础上,运用统计学中两种经典的常用方法,提出一种有效的手段——似然比–置换检验法,用以甄选癌症的差异表达基因。
Abstract:
The particularity of the differentially expressed cancer-related genes brings new challenges in the field of gene selection. Statisticians have succeeded in proposing new statistics and methods to solve the problem of selecting differentially expressed cancer gene. This article will advance a new method called “Likelihood Ratio-Permutation Test”, in order to select differentially expressed genes under the cancer model, after referencing some existing research.
文章引用:
李靖喆, 张帼奋. 癌症差异表达基因的似然比–置换检验法[J]. 计算生物学, 2011, 1(2): 22-26.
http://dx.doi.org/10.12677/hjcb.2011.12004
参考文献
[
1
]
R. Graham. DNA chips: State-of-the art. Nature Biotechnology, 1998, 16: 40-44.
[
2
]
J. D. Storey, R. Tibrashini. Statistical significance for geno- mewide studies. Proceedings of the National Academy of Scien- ces of the United States of America, 2003, 100(1): 9440-9445.
[
3
]
S. A. Tomlins, et al. Recurrent fusion of TMPRSS2 and ETS tran- scription factor genes in prostate cancer. Science, 2005, 310(5748): 644-648.
[
4
]
D. Ghosh, A. M. Chinnaiyan. Genomic outlier profile analysis: mixture models, null hypotheses, and nonparametric estimation. Biostatistics, 2009, 10: 60-69.
[
5
]
R. Tibshirani, T. Hastie. Outlier sums for differential gene ex- pression analysis. Biostatistics, 2007, 8: 2-8.
[
6
]
H. Lian. MOST: Detecting cancer differential gene expression. Biostatistics, 2008, 9: 411-418.
[
7
]
茆诗松, 王静龙, 濮晓龙. 高等数理统计(第二版)[M]. 北京: 高等教育出版社, 2006.
[
8
]
M. West, et al. Predicting the clinical status of human breast cancer by using gene expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 11462-11467.
[
9
]
P. Benedit, et al. PTOV1, a novel protein overexpressed in pro- state cancer containing a new class of protein homology blocks. Nature Publishing Group, 2001, 20: 1455-1464.
[
10
]
Y. Oka, et al. M6P/IGF2R tumor suppressor gene mutated in hepatocellular carcinomas in Japan. Hepatology, 2002, 35(5): 1153- 1163.
投稿
为你推荐
友情链接
科研出版社
开放图书馆