|
[1]
|
Baughman, R.H., Eckhardt, H. and Kertesz, M. (1987) Carbon Nanotubes—The Route toward Applications. Science, 297, 787-792. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Baughman, R.H., Zakhidov, A.A. and de Heer, W.A. (2002) Structure-Property Predictions for New Planar Forms of Carbon: Layered Phases Containing sp2 and sp Atoms. The Journal of Chemical Physics, 87, 6687-6699. [Google Scholar] [CrossRef]
|
|
[3]
|
Li, G., Li, Y., Liu, H., Guo, Y., Li, Y. and Zhu, D. (2010) Architecture of Graphdiyne Nanoscale Films. Chemical Communications, 46, 3256-3258. [Google Scholar] [CrossRef]
|
|
[4]
|
Li, Y., Xu, L., Liu, H. and Li, Y. (2014) Graphdiyne and Graphyne: From Theoretical Predictions to Practical Construction. Chemical Society Reviews, 43, 2572-2586. [Google Scholar] [CrossRef]
|
|
[5]
|
Du, R., Zhang, N., Xu, H., Mao, N., Duan, W., Wang, J., Zhao, Q., Liu, Z. and Zhang, J. (2014) CMP Aerogels: Ultrahigh-Surface-Area Carbon-Based Monolithic Materials with Superb Sorption Performance. Advanced Materials, 26, 8053-8058. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gong, K., Du, F., Xia, Z., Durstock, M. and Dai, L. (2009) Nitrogen-Doped Carbon Nanotube Arrays with High Electrocata-lytic Activity for Oxygen Reduction. Science, 323, 760-764. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zheng, Y., Jiao, Y., Ge, L., Jaroniec, M. and Qiao, S.Z. (2013) Two-Step Boron and Nitrogen Doping in Graphene for En-hanced Synergistic Catalysis. Angewandte Chemie International Edition, 52, 3110-3116. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Gong, X., Liu, S., Ouyang, C., Strasser, P. and Yang, R. (2015) Ni-trogen- and Phosphorus-Doped Biocarbon with Enhanced Electrocatalytic Activity for Oxygen Reduction. ACS Catalysis, 5, 920-927. [Google Scholar] [CrossRef]
|
|
[9]
|
Meng, Y., Voiry, D., Goswami, A., Zou, X., Huang, X., Chhowalla, M., Liu, Z. and Asefa, T. (2014) N-, O-, and S-Tridoped Nanoporous Carbons as Selective Catalysts for Oxygen Reduction and Alcohol Oxidation Reactions. Journal of the American Chemical Society, 136, 13554-13557. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hao, L., Zhang, S., Liu, R., Ning, J., Zhang, G. and Zhi, L. (2015) Bot-tom-Up Construction of Triazine-Based Frameworks as Metal-Free Electrocatalysts for Oxygen Reduction Reaction. Advanced Materials, 27, 3190-3195. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Li, Y. and Dai, H. (2014) Recent Advances in Zinc-Air Batteries. Chemical Society Reviews, 43, 5257-5275. [Google Scholar] [CrossRef]
|
|
[12]
|
Cao, R., Lee, J.-S., Liu, M. and Cho, J. (2012) Recent Progress in Non-Precious Catalysts for Metal-Air Batteries. Advanced Energy Materials, 2, 816-829. [Google Scholar] [CrossRef]
|
|
[13]
|
Dai, L., Xue, Y., Qu, L., Choi, H.-J. and Baek, J.-B. (2015) Met-al-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 115, 4823-4892. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liang, Y., Li, Y., Wang, H. and Dai, H. (2013) Strongly Coupled Inor-ganic/Nanocarbon Hybrid Materials for Advanced Electrocatalysis. Journal of the American Chemical Society, 135, 2013-2036. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zheng, Y., Jiao, Y., Jaroniec, M., Jin, Y. and Qiao, S.Z. (2012) Nanostructured Metal-Free Electrochemical Catalysts for Highly Efficient Oxygen Reduction. Small, 8, 3550-3566. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Liu, J., Song, P., Ning, Z. and Xu, W. (2015) Recent Advances in Heteroatom-Doped Metal-Free Electrocatalysts for Highly Efficient Oxygen Reduction Reaction. Electrocatalysis, 6, 132-147. [Google Scholar] [CrossRef]
|
|
[17]
|
Zhang, S., Du, H., He, J., Huang, C., Liu, H., Cui, G. and Li, Y. (2016) Nitrogen-Doped Graphdiyne Applied for Lithium-Ion Storage. ACS Applied Materials & Interfaces, 8, 8467-8473. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Bu, H., Zhao, M., Zhang, H., Wang, X., Xi, Y. and Wang, Z. (2012) Isoelectronic Doping of Graphdiyne with Boron and Nitrogen: Stable Configurations and Band Gap Modification. The Journal of Physical Chemistry A, 116, 3934-3939. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, S., Cai, Y., He, H., Zhang, Y., Liu, R., Cao, H., Wang, M., Liu, J., Zhang, G., Li, Y., Liu, H. and Li, B. (2016) Heteroatom Doped Graphdiyne as Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction in Alkaline Medium. Journal of Materials Chemistry A, 4, 4738-4744. [Google Scholar] [CrossRef]
|
|
[20]
|
Kang, B., Shi, H., Wang, F.-F. and Lee, J.Y. (2016) Importance of Doping Site of B, N, and O in Tuning Electronic Structure of Graphynes. Carbon, 105, 156-162. [Google Scholar] [CrossRef]
|
|
[21]
|
Autreto, P.A.S., de Sousa, J.M. and Galvao, D.S. (2014) Site-Dependent Hydrogenation on Graphdiyne. Carbon, 77, 829-834. [Google Scholar] [CrossRef]
|
|
[22]
|
Zhang, P., Ma, S. and Sun, L.Z. (2016) Hydroxylated Graphyne and Graphdiyne: First-Principles Study. Applied Surface Science, 361, 206-212. [Google Scholar] [CrossRef]
|
|
[23]
|
He, J., Wang, N., Yang, Z., Shen, X., Wang, K., Huang, C., Yi, Y., Tu, Z. and Li, Y. (2018) Fluoride Graphdiyne as A Free-Standing Electrode Displaying Ultra-Stable and Extraor-dinary High Li Storage Performance. Energy & Environmental Science, 11, 2893-2903. [Google Scholar] [CrossRef]
|
|
[24]
|
He, J., Wang, N., Cui, Z., Du, H., Fu, L., Huang, C., Yang, Z., Shen, X., Yi, Y., Tu, Z. and Li, Y. (2017) Hydrogen Substituted Graphdiyne as Carbon-Rich Flexible Electrode for Lithium and Sodium Ion Batteries. Nature Communications, 8, Article No. 1172. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Yu, H., Xue, Y. and Li, Y. (2019) Graphdiyne and Its Assem-bly Architectures: Synthesis, Functionalization, and Applications. Advanced Materials, 31, Article ID: 1803101. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Xie, C., Wang, N, Li, X., Xu, G. and Huang, C. (2020) Frontispiece: Research on the Preparation of Graphdiyne and Its Derivatives. Chemistry—A European Journal, 26, 569-583. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Du, H., Yang, H., Huang, C., He, J., Liu, H. and Li, Y. (2016) Graphdiyne Applied for Lithium-Ion Capacitors Displaying High Power and Energy Densities. Nano Energy, 22, 615-622. [Google Scholar] [CrossRef]
|
|
[28]
|
Wang, K., Wang, N., He, J., Yang, Z., Shen, X. and Huang, C. (2017) Preparation of 3D Architecture Graphdiyne Nanosheets for High-Performance Sodium-Ion Batteries and Capacitors. ACS Applied Materials & Interfaces, 9, 40604-40613. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Shen, X., He, J., Wang, K., Li, X., Wang, X., Yang, Z., Wang, N., Zhang, Y. and Huang, C. (2019) Fluorine-Enriched Graphdiyne as an Efficient Anode in Lithium-Ion Capacitors. ChemSusChem, 12, 1342-1348. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Shen, X., Yang, Z., Wang, K., Wang, N., He, J., Du, H. and Huang, C. (2018) Nitrogen-Doped Graphdiyne as High-Capacity Electrode Materials for Both Lithium-Ion and Sodium-Ion Ca-pacitors. ChemElectroChem, 5, 1435-1443. [Google Scholar] [CrossRef]
|
|
[31]
|
Huang, C.-S. and Li, Y.-L. (2016) Structure of 2D Graphdiyne and its Application in Energy Fields. Acta Physico-Chimica Sinica, 32, 1314-1329. [Google Scholar] [CrossRef]
|
|
[32]
|
Lv, Q., Si, W., He, J., Sun, L., Zhang, C., Wang, N., Yang, Z., Li, X., Wang, X., Deng, W., Long, Y., Huang, C. and Li, Y. (2018) Selectively Nitrogen-Doped Carbon Materials as Superior Metal-Free Catalysts for Oxygen Reduction. Nature Communications, 9, Article No. 3376. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wang, F., Zuo, Z., Shang, H., Zhao, Y. and Li, Y. (2019) Ul-trafastly Interweaving Graphdiyne Nanochain on Arbitrary Substrates and its Performance as a Supercapacitor Electrode. ACS Applied Materials & Interfaces, 11, 2599-2607. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Li, Y., Guo, C., Li, J., Liao, W., Li, Z., Zhang, J. and Chen, C. (2017) Pyrolysis-Induced Synthesis of Iron and Nitrogen-Containing Carbon Nanolayers Modified Graphdiyne Nanostructure as a Promising Core-Shell Electrocatalyst for Oxygen Reduction Reaction. Carbon, 119, 201-210. [Google Scholar] [CrossRef]
|
|
[35]
|
Liu, R., Zhou, J., Gao, X., Li, J., Xie, Z., Li, Z., Zhang, S., Tong, L., Zhang, J. and Liu Z. (2017) Graphdiyne Filter for Decontaminating Lead-Ion-Polluted Water. Advanced Electronic Materials, 3, Article ID: 1700122. [Google Scholar] [CrossRef]
|
|
[36]
|
Kuang, C., Tang, G., Jiu, T., Yang, H., Liu, H., Li, B., Luo, W., Li, X., Zhang, W., Lu, F., Fang, J. and Li, Y. (2015) Highly Efficient Electron Transport Obtained by Doping PCBM with Graphdiyne in Planar-Heterojunction Perovskite Solar Cells. Nano Letters, 15, 2756-2762. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Li, J., Jiu, T., Duan, C., Wang, Y., Zhang, H., Jian, H., Zhao, Y., Wang, N., Huang, C. and Li, Y. (2018) Improved Electron Transport in MAPbI3 Perovskite Solar Cells Based on Dual Doping Graphdiyne. Nano Energy, 46, 331-337. [Google Scholar] [CrossRef]
|