|
[1]
|
Schauer, R. and Kamerling, J.P. (2018) Exploration of the Sialic Acid World. Advances in Carbohydrate Chemistry and Biochemistry, 75, 1-213. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Vajaria, B.N., Patel, K.R., Begum, R., et al. (2012) Glycoprotein Electrophoretic Patterns Have Potential to Monitor Changes Associated with Neoplastic Transformation in Oral Cancer. The International Journal of Biological Markers, 27, e247-e256. [Google Scholar] [CrossRef]
|
|
[3]
|
季海生, 厉波, 杨爱, 等. 血清唾液酸检测在恶性肿瘤诊治中的临床研究[J]. 中华全科医师杂志, 2010, 9(5): 345-346.
|
|
[4]
|
Huang, X., Yao, Q., Zhang, L., et al. (2019) The Serum SA Levels Are Significantly Increased in Sepsis But Decreased in Cirrhosis. Progress in Molecular Biology and Translational Science, 162, 335-348. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Cheeseman, J., Kuhnle, G., Spencer, D.I.R., et al. (2021) Assays for the Identification and Quantification of Sialic Acids: Challenges, Opportunities and Future Perspectives. Bioorganic & Medicinal Chemistry, 30, Article ID: 115882. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tsoukalas, C., Geninatti-Crich, S., Gaitanis, A., et al. (2018) Tumor Targeting via Sialic Acid: [68Ga]DOTA-en-pba as a New Tool for Molecular Imaging of Cancer with Pet. Molecular Imaging and Biology, 20, 798-807. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Guruaribam, V.D. and Sarumathi, T. (2020) Relevance of Serum and Salivary Sialic Acid in Oral Cancer Diagnostics. Journal of Cancer Research and Therapeutics, 16, 401-404. [Google Scholar] [CrossRef]
|
|
[8]
|
Rathod, S., Shori, T., Sarda, T.S., et al. (2018) Comparative Analysis of Salivary Sialic Acid Levels in Patients with Chronic Obstructive Pulmonary Disease and Chronic Periodontitis Patients: A Biochemical Study. Indian Journal of Dental Research, 29, 22-25. [Google Scholar] [CrossRef]
|
|
[9]
|
Cheson, B.D., Horing, S.J., Coiffier, B., et al. (1999) Report of an International Workshop to Standardize Response Criteria for Non-Hodgkin’s Lymphomas. NCI Sponsored International Working Group. Journal of Clinical Oncology, 17, 1244. [Google Scholar] [CrossRef]
|
|
[10]
|
Spill, F., Reynolds, D.S., Kamm, R.D., et al. (2016) Impact of the Physical Microenvironment on Tumor Progression and Metastasis. Current Opinion in Biotechnology, 40, 41-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Del Prete, A., Schioppa, T., Tiberio, L., et al. (2017) Leukocyte Trafficking in Tumor Microenvironment. Current Opinion in Pharmacology, 35, 40-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wang, M., Zhao, J., Zhang, L., et al. (2017) Role of Tumor Microenvironment in Tumorigenesis. Journal of Cancer, 8, 761-773. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Bull, C., Boltje, T.J., Balneger, N., Weischer, S.M., et al. (2018) Sialic Acid Blockade Suppresses Tumor Growth by Enhancing T-Cell-Mediated Tumor Immunity. Cancer Research, 78, 3574-3588. [Google Scholar] [CrossRef]
|
|
[14]
|
Dobie, C. and Skropeta, D. (2021) Insights into the Role of Sialylation in Cancer Progression and Metastasis. British Journal of Cancer, 124, 76-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhou, X., Yang, G. and Guan, F. (2020) Biological Functions and Analytical Strategies of Sialic Acids in Tumor. Cells, 9, 273. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Schreiber, R.D., Old, L.J. and Smyth, M.J. (2011) Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science, 331, 1565-1570. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Bull, C., Den Brok, M.H. and Adema, G.J. (2014) Sweet Escape: Sialic Acids in Tumor Immune Evasion. Biochimica et Biophysica Acta, 1846, 238-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Guo, X., Elkashef, S.M., Patel, A., et al. (2021) An Assay for Quantitative Analysis of Polysialic Acid Expression in Cancer Cells. Carbohydrate Polymers, 259, Article ID: 117741. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Sun, H.Y., Zhou, Y., Jiang, H.Y., et al. (2020) Elucidation of Functional Roles of Sialic Acids in Cancer Migration. Frontiers in Oncology, 10, 401. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kohnz, R.A., Roberts, L.S., Detomaso, D., et al. (2016) Protein Sialylation Regulates a Gene Expression Signature That Promotes Breast Cancer Cell Pathogenicity. ACS Chemical Biology, 11, 2131-2139. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Dedova, T., Braicu, E.I., Sehouli, J., et al. (2019) Sialic Acid Linkage Analysis Refines the Diagnosis of Ovarian Cancer. Frontiers in Oncology, 9, 261. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Nayak, S.B., Duncan, H., Lallo, S., et al. (2008) Correlation of Microalbumin and Sialic Acid with Anthropometric Variables in Type-2 Diabetic Patients with and without Nephropathy. Vascular Health and Risk Management, 4, 243-247. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Suzuki, O., Nozawa, Y., Kawaguchi, T., et al. (2002) UDP GlcNAc2-Epimerase Regulates Cell Surface Sialylation and Cell Adhesion to Extracellular Matrix in Burkitt’s Lymphoma. International Journal of Oncology, 20, 1005-1011. [Google Scholar] [CrossRef]
|
|
[24]
|
Suzuki, O., Abe, M. and Hashimoto, Y. (2015) Sialylation and Glycosylation Modulate Cell Adhesion and Invasion to Extracellular Matrix in Human Malignant Lymphoma: Dependency on Integrin and the Rho GTPase Family. International Journal of Oncology, 47, 2091-2099. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Tomaszewska, R., Sonta-Jakimczyk, D., Dyduch, A., et al. (1997) Sialic Acid Concentration in Different Stages of Malignant Lymphoma and Leukemia in Children. Acta Paediatrica Japonica, 39, 448-450. [Google Scholar] [CrossRef]
|
|
[26]
|
张健, 张炳昌, 武春晓, 等. 血清唾液酸在三种临床常见恶性肿瘤中的检测及临床意义[J]. 医学检验与临床, 2008, 19(6): 26-28.
|
|
[27]
|
Vajaria, B.N., Patel, K.R., Begum, R., et al. (2016) Sialylation: An Avenue to Target Cancer Cells. Pathology & Oncology Research, 22, 443-447. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lin, C.H., Yeh, Y.C. and Yang, K.D. (2021) Functions and Therapeutic Targets of Siglec-Mediated Infections, Inflammations and Cancers. Journal of the Formosan Medical Association, 120, 5-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Luzina, I.G., Lillehoj, E.P., Lockatell, V., et al. (2021) Therapeutic Effect of Neuraminidase-1-Selective Inhibition in Mouse Models of Bleomycin-Induced Pulmonary Inflammation and Fibrosis. Journal of Pharmacology and Experimental Therapeutics, 376, 136-146. [Google Scholar] [CrossRef] [PubMed]
|