|
[1]
|
Suhito, I.R., Koo, K.M. and Kim, T.H. (2020) Recent Advances in Electrochemical Sensors for the Detection of Biomolecules and Whole Cells. Biomedicines, 9, 15. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Nahar, L., Guo, M. and Sarker, S.D. (2020) Gas Chromatographic Analysis of Naturally Occurring Cannabinoids: A Review of Literature Published during the Past Decade. Phytochemical Analysis: PCA, 31, 135-146.
[Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhu, Z., Lu, J.J. and Liu, S. (2012) Protein Separation by Capillary Gel Electrophoresis: A Review. Analytica chimica acta, 709, 21-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Qi, H. and Zhang, C. (2020) Electrogenerated Chemiluminescence Biosensing. Analytical Chemistry, 92, 524-534.
[Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
朱建中, 周衍. 电化学生物传感器的进展[J]. 专家论坛, 1997(4): 1-8.
|
|
[6]
|
邹绍芳, 门洪, 王平. 微型电化学传感器研究的最新进展[J]. 传感技术学报, 2004, 6(2): 336-341.
|
|
[7]
|
Ashley, K. (2003) Developments in Electrochemical Sensors for Occupational and Environmental Health Applications. Journal of Hazardous Materials, 102, 1-12. [Google Scholar] [CrossRef]
|
|
[8]
|
Guth, U., Vonau, W. and Zosel, J. (2009) Recent Developments in Electrochemical Sensor Application and Technology—A Review. Measurement Science & Technology, 20, 1-14. [Google Scholar] [CrossRef]
|
|
[9]
|
Miao, P. and Tang, Y.G. (2020) Cascade Toehold-mediated Strand Displacement Reaction for Ultrasensitive Detection of Exosomal MicroRNA. CCS Chemistry, 2, 2331-2339. [Google Scholar] [CrossRef]
|
|
[10]
|
Yang, H.M., Kong, Q.K. and Wang, S. (2014) Hand-Drawn & Written Pen-On-Paper Electrochemiluminescence Immunodevice Powered by Rechargeable Battery for Low-Cost Point-of-Care Testing. Biosensors and Bioelectronics, 61, 21-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Guo, X.L., Wang, Q. and Li, J.L. (2015) A Mini-Electrochemical System Integrated Micropipet Tip and Pencil Graphite Electrode for Detection of Anticancer Drug Sensitivity in Vitro. Biosensors and Bioelectronics, 64, 594-596.
[Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
He, J.G. and Hu, L. (2014) Flexible Lead Sulfide Colloidal Quantum Dot Photodetector Using Pencil Graphite Electrodes on Paper Substrates. Journal of Alloys and Compounds, 596, 73-78.
[Google Scholar] [CrossRef]
|
|
[13]
|
Mandal, P., Deya, R. and Chakraborty, S. (2012) Electrokinetics with “Paper-and-Pencil” Devices. Lab on a Chip, 12, 4026-4028. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wang, Y.G. and Zhou, H.S. (2011) To Draw an Air Electrode of Li-Air Battery by Pencil. Energy & Environmental Science, 4, 1704-1707. [Google Scholar] [CrossRef]
|
|
[15]
|
Akbari Hasanjani, H.R. and Zarei, K. (2019) An Electrochemical Sensor for Attomolar Determination of Mercury(II) Using DNA/Poly-L-Methionine-Gold Nanoparticles/Pencil Graphite Electrode. Biosensors & Bioelectronics, 128, 1-8.
[Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ng, K.L. and Khor, S.M. (2017) Graphite-Based Nanocomposite Electrochemical Sensor for Multiplex Detection of Adenine, Guanine, Thymine, and Cytosine: A Biomedical Prospect for Studying DNA Damage. Analytical Chemistry, 89, 10004-10012. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Andres, W.M., Scott, T.P., Manish, J.B., et al. (2007) Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Communications, 46, 1318-1320. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Thom, N.K., Lewis, G.G., DiTucci, M.J., et al. (2013) Two General Designs for Fluidic Batteries in Paper-Based Microfluidic Devices That Provide Predictable and Tunable Sources of Power for On-Chip Assays. RSC Advances, 3, 6888-6895. [Google Scholar] [CrossRef]
|
|
[19]
|
Zhao, C., Thuo, M.M. and Liu, X. (2013) A Microfluidic Paper-Based Electrochemical Biosensor Array for Multiplexed Detection of Metabolic Biomarkers. Science and Technology of Advanced Materials, 14, Article ID: 054402.
[Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wang, P., Wang, M.Y., Zhou, F.Y., et al. (2017) Development of a Paper-Based, Inexpensive, and Disposable Electrochemical Sensing Platform for Nitrite Detection. Electrochemistry Communications, 81, 74-78.
[Google Scholar] [CrossRef]
|
|
[21]
|
Gutiérrez-Capitán, M., Baldi, A. and Fernández-Sánchez, C. (2020). Electrochemical Paper-Based Biosensor Devices for Rapid Detection of Biomarkers. Sensors, 20, 967. [CrossRef] [PubMed]
|
|
[22]
|
Santhiago, M., Strauss, M., Pereira, M.P., et al. (2017) Direct Drawing Method of Graphite onto Paper for High-Performance Flexible Electrochemical Sensors. ACS Applied Materials & Interfaces, 9, 11959-11966.
[Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ren, T.L., Tian, H., Xie, D., et al. (2012) Flexible Graphite-on-Paper Piezoresistive. Sensors, 12, 6685-6694.
[Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Santhiago, M., Henry, C.S. and Kubota, L.T. (2014) Low Cost, Simple Three Dimensional Electrochemical Paper-Based Analytical Device for Determination of P-Nitrophenol. Electrochimica Acta, 130, 771-777.
[Google Scholar] [CrossRef]
|
|
[25]
|
Li, W.B., Qian, D.P., Li, Y.B., Bao, N., Gu, H.Y. and Yu, C.M. (2016) Fully-Drawn Pencil-On-Paper Sensors for Electroanalysis of Dopamine. Journal of Electroanalytical Chemistry, 769, 72-79.
[Google Scholar] [CrossRef]
|
|
[26]
|
Nikos, G. and Tsierkezos, U.R. (2012) Oxidation of Dopamine on Multi-Walled Carbon Nanotubes. Journal of Solid State Electrochemistry, 16, 2217-2226. [Google Scholar] [CrossRef]
|
|
[27]
|
Kasetty, R., Matti, M.R., Pamula, R., et al. (2013) An Electrochemical Sensor Based on Poly Film Coated Electrode for the Determination of Dopamine and Simultaneous Separation in the Presence of Uric Acid and Ascorbic Acid: A Voltammetric Method. Colloids and Surfaces B: Biointerfaces, 106, 145-150.
[Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhou, Y.Z., Zhang, H.Y., Zhang, J., et al. (2013) Electrochemically Sensitive Determination of Dopamine and Uric Acid Based on Poly (BeryllonⅡ)/Nanowires-Lapo4 Modified Carbon Paste Electrode. Sensors and Actuators B, 182, 610-617. [Google Scholar] [CrossRef]
|
|
[29]
|
Contreras, F., Lares, M. and Magaldi, L. (2010) Influence of Dopamine and Metoclopramide on Hemodynamic Parameters in Patients with Type 2 Diabetes Mellitus. Revista Latinoamericana de Hipertension, 5, 43-52.
|
|
[30]
|
Özcan, A., İlkbaş, S. and AtılırÖzcan, A. (2017) Development of a Disposable and Low-Cost Electrochemical Sensor for Dopamine Detection Based on Poly(Pyrrole-3-Carboxylic Acid)-Modified Electrochemically Over-Oxidized Pencil Graphite Electrode. Talanta, 165, 489-495. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Nomura, Y. and Segawa, M. (2003) Neurology of Tourette’s Syndrome (TS) TS as a Developmental Dopamine Disorder: A Hypothesis. Brain & Development, 25, 37-42. [Google Scholar] [CrossRef]
|
|
[32]
|
Yang, P.H., Wang, L.S. and Wu, Q. (2014) A Method for Determination of Glucose by an Amperometric Bienzyme Biosensor Based on Silver Nanocubes Modified Au Electrode. Sensors and Actuators B, 194, 71-78.
[Google Scholar] [CrossRef]
|
|
[33]
|
Soni, A. and Jha, S.K. (2014) A Paper Strip Based Non-Invasive Glucose Biosensor for Salivary Analysis. Biosensors & Bioelectronics, 67, 763-768. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Gutierrez, E.A., Mundhada, H. and Meier, T. (2013) Reengineered Glucose Oxidase for Amperometric Glucose Determination in Diabetes Analytics. Biosensors and Bioelectronics, 50C, 84-90.
[Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Mohammadifar, M., Tahernia, M. and Choi, S. (2019) An Equipment-Free, Paper-Based Electrochemical Sensor for Visual Monitoring of Glucose Levels in Urine. SLAS Technology, 24, 499-505.
[Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Kong, F.Y., Gu, S.X., Li, W.W., et al. (2014) A Paper Disk Equipped with Graphene/Polyaniline/Au Nanoparticles/Glucose Oxidase Biocomposite Modified Screen-Printed Electrode: Toward Whole Blood Glucose Determination. Biosensors & bioelectronics, 56, 77-82. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Chaiyo, S., Mehmeti, E., Siangproh, W., et al. (2018) Non-Enzymatic Electrochemical Detection of Glucose with a Disposable Paper-Based Sensor Using a Cobalt Phthalocyanine-Ionic Liquid-Graphene Composite. Biosensors & bioelectronics, 102, 113-120. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Matsumoto, A., Sato, N., Kataoka, K., et al. (2009) Noninvasive Sialic Acid Detection at Cell Membrane by Using Phenylboronic Acid Modified Self-Assembled Monolayer Gold Electrode. Journal of the American Chemistry Society, 131, 12022-12023. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Marzouk, S.A.M., Ashraf, S.S. and Tayyari, K. A.A. (2016) Prototype Amperometric Biosensor for Sialic Acid Determination. Analytical Chemistry, 4, 1668-1674. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhou, Y., Huangfu, H., Yang, J., et al. (2019) Potentiometric Analysis of Sialic Acid with a Flexible Carbon Cloth Based on Boronate Affinity and Molecularly Imprinted Polymers. The Analyst, 144, 6432-6437.
[Google Scholar] [CrossRef]
|
|
[41]
|
Perry, M., Li, Q. and Kennedy, R.T. (2009) Review of Recent Advances in Analytical Techniques for the Determination of Neurotransmitters. Analytica Chimica Acta, 653, 1-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
]Madhurantakam, S., Karnam, J.B., Brabazon, D., et al. (2020) “Nano”: An Emerging Avenue in Electrochemical Detection of Neurotransmitters. ACS Chemical Neuroscience, 11, 4024-4047.
[Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Amatatongchai, M., Sitanurak, J., Sroysee, W., et al. (2019) Highly Sensitive and selective Electrochemical Paper-Based Device Using a Graphite Screen-Printed Electrode Modified with Molecularly Imprinted Polymers Coated Fe3O4@Au@Sio2 for Serotonin Determination. Analytica Chimica Acta, 1077, 255-265.
[Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Orzari, L.O., Cristina de Freitas, R., Aparecida de Araujo Andreotti, I., et al. (2019) A Novel Disposable Self-Adhesive Inked Paper Device for Electrochemical Sensing of Dopamine and Serotonin Neurotransmitters and Biosensing of Glucose. Biosensors & Bioelectronics, 138, Article ID: 111310. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Minta, D., Moyseowicz, A., Gryglewicz, S., et al. (2020) A Promising Electrochemical Platform for Dopamine and Uric Acid Detection Based on a Polyaniline/Iron Oxide-Tin Oxide/Reduced Graphene Oxide Ternary Composite. Molecules, 25, 5869. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Yang, Y., Li, M. and Zhu, Z. (2019) A Novel Electrochemical Sensor Based on Carbon Nanotubes Array for Selective Detection of Dopamine or Uric Acid. Talanta, 201, 295-300. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Huang, X., Shi, W.S., Li, J., et al. (2020) Determination of Salivary Uric Acid by Using Poly(3,4-Ethylenedioxythipohene) and Graphene Oxide in a Disposable Paper-Based Analytical Device. Analytica Chimica Acta, 1103, 75-83.
[Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Cai, W.H., Lai, T. and Du, H.J. (2014) Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid Based on an Exfoliated Graphite Paper Electrode: A High Performance Flexible Sensor. Sensors and Actuators B, 193, 492-500. [Google Scholar] [CrossRef]
|