学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
理论数学
Vol. 11 No. 7 (July 2021)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
非齐次Burgers方程的黎曼初值扰动问题解的渐近稳定性
Asymptotic Stability of Shock Waves and Rarefaction Waves under Periodic Perturbations for Inhomogeneous Burgers Equation
DOI:
10.12677/PM.2021.117157
,
PDF
,
HTML
,
,
被引量
作者:
张兆祥
,
李 悦
:上海师范大学,上海
关键词:
非齐次Burgers方程
;
激波
;
稀疏波
;
周期扰动
;
广义特征线
;
Inhomogeneous Burgers Equation
;
Shock Waves
;
Rarefaction Waves
;
Periodic Perturbations
;
Generalized Characteristics
摘要:
本文主要研究非齐次 Burgers 方程的柯西问题,初值为黎曼初值周期扰动时,基本波结构的渐近 稳定性。我们发现激波解扰动后,在有限时间 T 后仍为激波解,在任意时刻 t > T ,它左右状态仍 为周期函数,且在 L
∞
范数的意义下衰减至0。 特别地,扰动后的激波在原激波两侧摆动,扰动后 的稀疏波解在 L
∞
范数的意义下衰减至0。
Abstract:
In this paper we study large time behaviors toward shock waves and rarefaction waves under periodic perturbations for inhomogeneous Burgers equation. We show that for shock waves, after a finite time, the perturbed shock actually consists of two periodic functions contacting each other at a shock, and this shock curve oscillates on both sides of the background shock curve. Both of perturbed shock waves and perturbed rarefaction waves tend to zero in the L
∞
norm.
文章引用:
张兆祥, 李悦. 非齐次Burgers方程的黎曼初值扰动问题解的渐近稳定性[J]. 理论数学, 2021, 11(7): 1400-1415.
https://doi.org/10.12677/PM.2021.117157
参考文献
[1]
Kruzkov, S.N. (1970) First Order Quasilinear Equations in Several Independent Variables. Matematicheskii Sbornik (N S), 10, 217.
https://doi.org/10.1070/SM1970v010n02ABEH002156
[2]
Hopf, E. (1950) The Partial Differential Equation ut + uux = xx. Communications on Pure and Applied Mathematics, 3, 201-230.
https://doi.org/10.1002/cpa.3160030302
[3]
Lax, P.D. (1957) Hyperbolic Systems of Conservation Laws II. Communications on Pure and Applied Mathematics, 10, 537-566.
https://doi.org/10.1002/cpa.3160100406
[4]
Glimm, J. and Lax, P.D. (1970) Decay of Solutions of Systems of Nonlinear Hyperbolic Con- servation Laws, Vol. 101. American Mathematical Society.
[5]
Xin, Z.P., Qian, Y. and Yuan, Y. (2019) Asymptotic Stability of Shock Waves and Rarefaction Waves under Periodic Perturbations for 1−d Convex Scalar Conservation Laws. SIAM Journal on Mathematical Analysis, 51, 2971-2994.
https://doi.org/10.1137/18M1192883
[6]
Yuan, Q. and Yuan, Y. (2020) On Riemann Solutions under Different Initial Periodic Per- turbations at Two Infinities for 1-d Scalar Convex Conservation Laws. Journal of Differential Equations, 268, 5140-5155.
https://doi.org/10.1016/j.jde.2019.11.008
[7]
Lyberopoulos, A.N. (1990) Asymptotic Oscillations of Solutions of Scalar Conservation Laws with Convexity under the Action of a Linear Excitation. Quarterly of Applied Mathematics, 48, 755-765.
https://doi.org/10.1090/qam/1079918
[8]
Fan, H. and Jack, K.H. (1993) Large-Time Behavior in Inhomogeneous Conservation Laws. Archive for Rational Mechanics and Analysis, 125, 201-216.
https://doi.org/10.1007/BF00383219
[9]
匡杰, 王泽军. 非齐次Burgers 方程周期解的大时间行为[J]. 数学物理学报, 2015, 35(1): 1-14.
[10]
Mascia, C. and Sinestrari, C. (1997) The Perturbed Riemann Problem for a Balance Law. Advances in Difference Equations, 2, 779-810.
[11]
Dafermos, C.M. (2005) Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin.
https://doi.org/10.1007/3-540-29089-3
投稿
为你推荐
友情链接
科研出版社
开放图书馆