| [1] | Armand, M. and Tarascon, J.M. (2008) Building Better Batteries. Nature, 451, 652-657. https://doi.org/10.1038/451652a
 | 
                     
                                
                                    
                                        | [2] | Goodenough, J.B. (2015) Energy Storage Materials: A Perspective. Energy Storage Materials, 1, 158-161. https://doi.org/10.1016/j.ensm.2015.07.001
 | 
                     
                                
                                    
                                        | [3] | Wang, X., Chen, Y., Schmidt, O.G. and Yan, C. (2016) Engineered Nanomembranes for Smart Energy Storage Devices. Chemical Society Reviews, 45, 1308-1330. https://doi.org/10.1039/C5CS00708A
 | 
                     
                                
                                    
                                        | [4] | Zhou, J., Qian, T., Wang, M., Xu, N., Zhang, Q., Li, Q. and Yan, C. (2016) Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 8, 5358-5365. https://doi.org/10.1021/acsami.5b12392
 | 
                     
                                
                                    
                                        | [5] | Xu, N., Ma, X., Wang, M., Qian, T., Liang, J., Yang, W., Wang, Y., Hu, J. and Yan, C. (2016) Stationary Full Li-Ion Batteries with Interlayer-Expanded V6O13 Cathodes and Lithiated Graphite Anodes. Electrochemical Acta, 203, 171-177. https://doi.org/10.1016/j.electacta.2016.04.044
 | 
                     
                                
                                    
                                        | [6] | Zhou, J., Qian, T., Yang, T., Wang, M., Guo, J. and Yan, C. (2015) Nanomeshes of Highly Crystalline Nitrogen-Doped Carbon Encapsulated Fe/Fe3C Electrodes as Ultrafast and Stable Anodes for Li-Ion Batteries. Journal of Materials Chemistry A, 3, 15008-15014. https://doi.org/10.1039/C5TA03312H
 | 
                     
                                
                                    
                                        | [7] | Yang, T., Qian, T., Wang, M., Liu, J., Zhou, J., Sun, Z., Chen, M. and Yan, C. (2015) A New Approach towards the Synthesis of Nitrogen-Doped Graphene/MnO2 Hybrids for Ultralong Cycle-Life Lithium Ion Batteries. Journal of Materials Chemistry A, 3, 6291-6296. https://doi.org/10.1039/C4TA07208A
 | 
                     
                                
                                    
                                        | [8] | Fang, R., Zhao, S., Sun, Z., Wang, D.W., Cheng, H.M. and Li, F. (2017) More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects. Advanced Materials, 29, Article ID: 1606823. https://doi.org/10.1002/adma.201606823
 | 
                     
                                
                                    
                                        | [9] | Yang, T., Qian, T., Wang, M., Shen, X., Xu, N., Sun, Z. and Yan, C. (2016) A Sustainable Route from Biomass Byproduct Okara to High Content Nitrogen-Doped Carbon Sheets for Efficient Sodium Ion Batteries. Advanced Materials, 28, 539-545. https://doi.org/10.1002/adma.201503221
 | 
                     
                                
                                    
                                        | [10] | Xie, Y., Chen, Y., Liu, L., Tao, P., Fan, M., Xu, N., Shen, X. and Yan, C. (2017) Carbon Monoliths: Ultra-High Pyridinic N-Doped Porous Carbon Monolith Enabling High-Capacity K-Ion Battery Anodes for Both Half-Cell and Full-Cell Applications. Advanced Materials, 29, Article ID: 1702268. https://doi.org/10.1002/adma.201702268
 | 
                     
                                
                                    
                                        | [11] | Xu, J., Lawson, T., Fan, H., Su, D. and Wang, G. (2018) Updated Metal Compounds (MOFs, -S, -OH, -N, -C) Used as Cathode Materials for Lithium-Sulfur Batteries. Advanced Energy Materials, 8, Article ID: 1702607. https://doi.org/10.1002/aenm.201702607
 | 
                     
                                
                                    
                                        | [12] | Bruce, P.G., Freunberger, S.A., Hardwick, L.J. and Tarascon, J.M. (2012) Li-O2 and Li-S Batteries with High Energy Storage. Nature Materials, 11, 19-29. https://doi.org/10.1038/nmat3191
 | 
                     
                                
                                    
                                        | [13] | Evers, S. and Nazar, L.F. (2013) New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes. Accounts of Chemical Research, 46, 1135-1143. https://doi.org/10.1021/ar3001348
 | 
                     
                                
                                    
                                        | [14] | Ji, X.L., Lee, K.T. and Nazar, L.F. (2009) A Highly Ordered Nanostructured Carbon-Sulphur Cathode for Lithium-Sulphur Batteries. Nature Materials, 8, 500-506. https://doi.org/10.1038/nmat2460
 | 
                     
                                
                                    
                                        | [15] | Yang, Y., Zheng, G.Y. and Cui, Y. (2013) Nanostructured Sulfur Cathodes. Chemical Society Reviews, 42, 3018-3032. https://doi.org/10.1039/c2cs35256g
 | 
                     
                                
                                    
                                        | [16] | Liang, J., Sun, Z.H., Li, F. and Cheng, H.M. (2016) Carbon Materials for Li-S Batteries: Functional Evolution and Performance Improvement. Energy Storage Materials, 2, 76-106. https://doi.org/10.1016/j.ensm.2015.09.007
 | 
                     
                                
                                    
                                        | [17] | Larcher, D. and Tarascon, J. (2015) Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nature Chemistry, 7, 19-29. https://doi.org/10.1038/nchem.2085
 | 
                     
                                
                                    
                                        | [18] | Pang, Q., Liang, X., Kwok, C.Y. and Nazar, L.F. (2016) Advances in Lithium-Sulfur Batteries Based on Multifunctional Cathodes and Electrolytes. Nature Energy, 1, 16132-16142. https://doi.org/10.1038/nenergy.2016.132
 | 
                     
                                
                                    
                                        | [19] | Wild, M., O’Neill, L., Zhang, T., Purkayastha, R., Minton, G., Marinescu, M. and Offer, G.J. (2015) Lithium Sulfur Batteries, a Mechanistic Review. Energy & Environmental Science, 8, 3477-3494. https://doi.org/10.1039/C5EE01388G
 | 
                     
                                
                                    
                                        | [20] | Rosenman, A., Markevich, E., Salitra, G., Aurbach, D., Garsuch, A. and Chesneau, F.F. (2015) Review on Li-Sulfur Battery Systems: An Integral Perspective. Advanced Energy Materials, 5, Article ID: 1500212. https://doi.org/10.1002/aenm.201500212
 | 
                     
                                
                                    
                                        | [21] | Liu, J., Qian, T., Wang, M., Liu, X., Xu, N., You, Y. and Yan, C. (2017) Molecularly Imprinted Polymer Enables High-Efficiency Recognition and Trapping Lithium Polysulfides for Stable Lithium Sulfur Battery. Nano Letters, 17, 5064-5070. https://doi.org/10.1021/acs.nanolett.7b02332
 | 
                     
                                
                                    
                                        | [22] | Ma, L., Hendrickson, K.E., Wei, S. and Archer, L.A. (2015) Nanomaterials: Science and Applications in the Lithium-Sulfur Battery. Nano Today, 10, 315-338. https://doi.org/10.1016/j.nantod.2015.04.011
 | 
                     
                                
                                    
                                        | [23] | Cheng, X.B., Huang, J.Q., Zhang, Q., Peng, H.J., Zhao, M.Q. and Wei, F. (2014) Aligned Carbon Nanotube/Sulfur Composite Cathodes with High Sulfur Content for Lithium-Sulfur Batteries. Nano Energy, 4, 65-72. https://doi.org/10.1016/j.nanoen.2013.12.013
 | 
                     
                                
                                    
                                        | [24] | Wang, H., Yang, Y., Liang, Y., Robinson, J.T., Li, Y., Jackson, A., Cui, Y. and Dai, H. (2011) Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur Battery Cathode Material with High Capacity and Cycling Stability. Nano Letters, 11, 2644-2647. https://doi.org/10.1021/nl200658a
 | 
                     
                                
                                    
                                        | [25] | Zheng, G., Yang, Y., Cha, J.J., Hong, S.S. and Cui, Y. (2011) Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries. Nano Letters, 11, 4462-4467. https://doi.org/10.1021/nl2027684
 | 
                     
                                
                                    
                                        | [26] | Jayaprakash, N., Shen, J., Moganty, S.S., Corona, A. and Archer, L.A. (2011) Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries. Angewandte Chemie, 126, 6026-6030. https://doi.org/10.1002/ange.201100637
 | 
                     
                                
                                    
                                        | [27] | Xiao, L.F., Cao, Y.L., Xiao, J., Schwenzer, B., Engelhard, M.H., Saraf, L.V., Nie, Z.M., Exarhos, G.J. and Liu, J. (2012) A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium-Sulfur Batteries with Long Cycle Life. Advanced Materials, 24, 1176-1181. https://doi.org/10.1002/adma.201103392
 | 
                     
                                
                                    
                                        | [28] | Wu, F., Chen, J.Z., Chen, R.J., Wu, S.X., Li, L., Chen, S. and Zhao, T. (2011) Sulfur/Polythiophene with a Core/Shell Structure: Synthesis and Electrochemical Properties of the Cathode for Rechargeable Lithium Batteries. The Journal of Physical Chemistry C, 115, 6057-6063. https://doi.org/10.1021/jp1114724
 | 
                     
                                
                                    
                                        | [29] | Wang, J., Chen, J., Konstantinov, K., Zhao, L., Ng, S.H., Wang, G.X., Guo, Z.P. and Liu, H.K. (2006) Sulphur-Polypyrrole Composite Positive Electrode Materials for Rechargeable Lithium Batteries. Electrochemical Acta, 51, 4634-4638. https://doi.org/10.1016/j.electacta.2005.12.046
 | 
                     
                                
                                    
                                        | [30] | Choi, Y.J., Jung, B.S., Lee, D.J., Jeong, J.H., Kim, K.W., Ahn, H.J., Cho, K.K. and Gu, H.B. (2007) Electrochemical Properties of Sulfur Electrode Containing Nano Al2O3 for Lithium/Sulfur Cell. Physica Scripta, T129, 62-65. https://doi.org/10.1088/0031-8949/2007/T129/014
 | 
                     
                                
                                    
                                        | [31] | Lee, K.T., Black, R., Yim, T., Ji, X.L. and Nazar, L.F. (2012) Surface-Initiated Growth of Thin Oxide Coatings for Li-Sulfur Battery Cathodes. Advanced Energy Materials, 2, 1490-1496. https://doi.org/10.1002/aenm.201200006
 | 
                     
                                
                                    
                                        | [32] | Seh, Z.W., Li, W.Y., Cha, J.J., Zheng, G.Y., Yang, Y., McDowell, M.T., Hsu, P.C. and Cui, Y. (2013) Sulphur-TiO2 Yolk-Shell Nanoarchitecture with Internal Void Space for Long-Cycle Lithium-Sulphur Batteries. Nature Communications, 4, 1331-1336. https://doi.org/10.1038/ncomms2327
 | 
                     
                                
                                    
                                        | [33] | Chang, C.H., Chung, S.H. and Manthiram, A. (2017) Transforming Waste Newspapers into Nitrogen-Doped Conducting Interlayers for Advanced Li-S Batteries. Sustainable Energy Fuels, 1, 444-449. https://doi.org/10.1039/C7SE00014F
 | 
                     
                                
                                    
                                        | [34] | Xin, S., Gu, L., Zhao, N.-H., Yin, Y.-X., Zhou, L.-J., Guo, Y.-G. and Wan, L.-J. (2012) Smaller Sulfur Molecules Promise Better Lithium-Sulfur Batteries. Journal of the American Chemical Society, 134, 18510-18513. https://doi.org/10.1021/ja308170k
 | 
                     
                                
                                    
                                        | [35] | Wang, J., Yang, J., Xie, J. and Xu, N. (2002) A Novel Conductive Polymer-Sulfur Composite Cathode Material for Rechargeable Lithium Batteries. Advanced Materials, 14, 13-14. https://doi.org/10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
 | 
                     
                                
                                    
                                        | [36] | Kim, J.-S., Hwang, T.H., Kim, B.G., Min, J. and Choi, J.W. (2014) A Lithium-Sulfur Battery with a High Areal Energy Density. Advanced Functional Materials, 24, 5359-5367. https://doi.org/10.1002/adfm.201400935
 | 
                     
                                
                                    
                                        | [37] | Chung, W.J., Griebel, J.J., Kim, E.T., Yoon, H., Simmonds, A.G., Ji, H.J., Dirlam, P.T., Glass, R.S., Wie, J.J., Nguyen, N.A., Guralnick, B.W., Park, J., Arpad, S., Theato, P., Mackay, M.E., Sung, Y.-E., Char, K. and Pyun, J. (2013) The Use of Elemental Sulfur as an Alternative Feedstock for Polymeric Materials. Nature Chemistry, 5, 518-524. https://doi.org/10.1038/nchem.1624
 | 
                     
                                
                                    
                                        | [38] | Simmonds, A.G., Griebel, J.J., Park, J., Kim, K.R., Chung, W.J., Oleshko, V.P., Kim, J., Kim, E.T., Glass, R.S., Soles, C.L., Sung, Y.-E., Char, K. and Pyun, J. (2014) Inverse Vulcanization of Elemental Sulfur to Prepare Polymeric Electrode Materials for Li-S Batteries. ACS Macro Letters, 3, 229-232. https://doi.org/10.1021/mz400649w
 | 
                     
                                
                                    
                                        | [39] | Zeng, S., Li, L., Zhao, D., Liu, J., Niu, W., Wang, N. and Chen, S. (2017) Polymer-Capped Sulfur Copolymers as Lithium-Sulfur Battery Cathode: Enhanced Performance by Combined Contributions of Physical and Chemical Confinements. The Journal of Physical Chemistry C, 121, 2495-2503. https://doi.org/10.1021/acs.jpcc.6b09543
 | 
                     
                                
                                    
                                        | [40] | Xu, R., Lu, J. and Amine, K. (2015) Progress in Mechanistic Understanding and Characterization Techniques of Li-S Batteries. Advanced Energy Materials, 5, Article ID: 1500408. https://doi.org/10.1002/aenm.201500408
 | 
                     
                                
                                    
                                        | [41] | Liu, X., Huang, J.-Q., Zhang, Q. and Mai, L. (2017) Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries. Advanced. Materials, 29, Article ID: 1601759. https://doi.org/10.1002/adma.201601759
 | 
                     
                                
                                    
                                        | [42] | Pope, M.A. and Aksay, I.A. (2015) Structural Design of Cathodes for Li-S Batteries. Advanced Energy Materials, 5, Article ID: 1500124. https://doi.org/10.1002/aenm.201500124
 | 
                     
                                
                                    
                                        | [43] | Wang, J., He, Y.-S. and Yang, J. (2015) Sulfur-Based Composite Cathode Materials for High-Energy Rechargeable Lithium Batteries. Advanced Materials, 27, 569-575. https://doi.org/10.1002/adma.201402569
 | 
                     
                                
                                    
                                        | [44] | Dirlam, P.T., Glass, R.S., Char, K. and Pyun, J. (2017) The Use of Polymers in Li-S Batteries: A Review. Journal of Polymer Science Part A: Polymer Chemistry, 55, 1635-1668. https://doi.org/10.1002/pola.28551
 | 
                     
                                
                                    
                                        | [45] | Penczek, S., Slazak, R. and Duda, A. (1978) Anionic Copolymerisation of Elemental Sulphur. Nature, 273, 738-739. https://doi.org/10.1038/273738a0
 | 
                     
                                
                                    
                                        | [46] | Duda, A. and Penczek, S. (1980) Anionic Copolymerisation of Elemental Sulfur with 2,2-Dimethylthiirane. Die Makromolekulare Chemie, 181, 995-1001. https://doi.org/10.1002/macp.1980.021810503
 | 
                     
                                
                                    
                                        | [47] | Blight, L.B., Currell, B.R., Nash, B.J., Scott, T.M. and Stillo, C. (1980) Chemistry of the Modification of Sulphur by the Use of Dicyclopentadiene and of Styrene. British Polymer Journal, 12, 5-11. https://doi.org/10.1002/pi.4980120103
 | 
                     
                                
                                    
                                        | [48] | Tsuda, T. and Takeda, A. (1996) Palladium-Catalysed Cycloaddition Copolymerisation of Diynes with Elemental Sulfur to Poly(thiophene)s. Chemical Communications, 1317-1318. https://doi.org/10.1039/cc9960001317
 | 
                     
                                
                                    
                                        | [49] | Fu, C., Li, G., Zhang, J., Cornejo, B., Piao, S.S., Bozhilov, K.N., Haddon, R.C. and Guo, J. (2016) Electrochemical Lithiation of Covalently Bonded Sulfur in Vulcanized Polyisoprene. ACS Energy Letters, 1, 115-120. https://doi.org/10.1021/acsenergylett.6b00073
 | 
                     
                                
                                    
                                        | [50] | Oschmann, B., Park, J., Kim, C., Char, K., Sung, Y.-E. and Zentel, R. (2015) Copolymerization of Polythiophene and Sulfur to Improve the Electrochemical Performance in Lithium-Sulfur Batteries. Chemistry Materials, 27, 7011-7017. https://doi.org/10.1021/acs.chemmater.5b02317
 | 
                     
                                
                                    
                                        | [51] | Sun, Z., Xiao, M., Wang, S., Han, D., Song, S., Chen, G. and Meng, Y. (2014) Sulfur-Rich Polymeric Materials with Semi-Interpenetrating Network Structure as a Novel Lithium-Sulfur Cathode. Journal of Materials Chemistry A, 2, 9280-9286. https://doi.org/10.1039/c4ta00779d
 | 
                     
                                
                                    
                                        | [52] | Hu, H., Zhao, Z., Wan, W., Gogotsi, Y. and Qiu, J. (2013) Ultralight and Highly Compressible Graphene Aerogels. Advanced Materials, 25, 2219-2223. https://doi.org/10.1002/adma.201204530
 | 
                     
                                
                                    
                                        | [53] | Kim, H., Lee, J., Ahn, H., Kim, O. and Park, M.J. (2015) Synthesis of Three-Dimensionally Interconnected Sulfur-Rich Polymers for Cathode Materials of High-Rate Lithium-Sulfur Batteries. Nature Communications, 6, 7278-7287. https://doi.org/10.1038/ncomms8278
 | 
                     
                                
                                    
                                        | [54] | Je, S.H., Hwang, T.H., Talapaneni, S.N., Buyukcakir, O., Kim, H.J., Yu, J.-S., Woo, S. -G., Jang, M.C., Son, B.K., Coskun, A. and Choi, J.W. (2016) Rational Sulfur Cathode Design for Lithium-Sulfur Batteries: Sulfur-Embedded Benzoxazine Polymers. ACS Energy Letters, 1, 566-572. https://doi.org/10.1021/acsenergylett.6b00245
 | 
                     
                                
                                    
                                        | [55] | Xu, N., Qian, T., Liu, X., Liu, J., Chen, Y. and Yan, C. (2017) Greatly Suppressed Shuttle Effect for Improved Lithium Sulfur Battery Performance through Short Chain Intermediates. Nano Letters, 17, 538-543. https://doi.org/10.1021/acs.nanolett.6b04610
 | 
                     
                                
                                    
                                        | [56] | Wang, J., Yang, J., Wan, C., Du, K., Xie, J. and Xu, N. (2003) Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries. Advanced Functional Materials, 13, 487-492. https://doi.org/10.1002/adfm.200304284
 | 
                     
                                
                                    
                                        | [57] | Yu, X., Xie, J., Yang, J., Huang, H., Wang, K. and Wen, Z. (2004) Lithium Storage in Conductive Sulfur-Containing Polymers. Journal of Electroanalytical Chemistry, 573, 121-128. https://doi.org/10.1016/S0022-0728(04)00345-6
 | 
                     
                                
                                    
                                        | [58] | Fanous, J., Wegner, M., Grimminger, J., Andresen, A. and Buchmeiser, M.R. (2011) Structure-Related Electrochemistry of Sulfur-Poly(acrylonitrile) Composite Cathode Materials for Rechargeable Lithium Batteries. Chemistry of Materials, 23, 5024-5028. https://doi.org/10.1021/cm202467u
 | 
                     
                                
                                    
                                        | [59] | Zhang, S.S. (2014) Understanding of Sulfurized Polyacrylonitrile for Superior Performance Lithium/Sulfur Battery. Energies, 7, 4588-4600. https://doi.org/10.3390/en7074588
 | 
                     
                                
                                    
                                        | [60] | Wang, L., He, X., Li, J., Chen, M., Gao, J. and Jiang, C. (2012) Charge/Discharge Ccharacteristics of Sulfurized Polyacrylonitrile Composite with Different Sulfur Content in Carbonate Based Electrolyte for Lithium Batteries. Electrochimica Acta, 72, 114-119. https://doi.org/10.1016/j.electacta.2012.04.005
 | 
                     
                                
                                    
                                        | [61] | Wei, S., Ma, L., Hendrickson, K.E., Tu, Z. and Archer, L.A. (2015) Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites. Journal of the American Chemical Society, 137, 12143-12152. https://doi.org/10.1021/jacs.5b08113
 | 
                     
                                
                                    
                                        | [62] | Talapaneni, S.N., Hwang, T.H., Je, S.H., Buyukcakir, O., Choi, J.W. and Coskun, A. (2016) Elemental-Sulfur-Mediated Facile Synthesis of a Covalent Triazine Framework for High-Performance Lithium-Sulfur Batteries. Angewandte Chemie International Edition, 128, 3158-3163. https://doi.org/10.1002/ange.201511553
 | 
                     
                                
                                    
                                        | [63] | Song, J., Xu, T., Gordin, M.L., Zhu, P., Lv, D., Jiang, Y.-B., Chen, Y., Duan, Y. and Wang, D. (2014) Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High-Areal-Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium-Sulfur Batteries. Advanced Functional Materials, 24, 1243-1250. https://doi.org/10.1002/adfm.201302631
 | 
                     
                                
                                    
                                        | [64] | Manthiram, A., Chung, S.H. and Zu, C. (2015) Lithium-Sulfur Batteries: Progress and Prospects. Advanced Materials, 27, 1980-2006. https://doi.org/10.1002/adma.201405115
 | 
                     
                                
                                    
                                        | [65] | Li, X., Liang, J., Lu, Y., Hou, Z., Cheng, Q., Zhu, Y. and Qian, Y. (2017) Sulfur-Rich Phosphorus Sulfide Molecules for Use in Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 56, 2937-2941. https://doi.org/10.1002/anie.201611691
 | 
                     
                                
                                    
                                        | [66] | Zhou, J., Qian, T., Xu, N., Wang, M., Ni, X., Liu, X., Shen, X. and Yan, C. (2017) Selenium-Doped Cathodes for Lithium-Organosulfur Batteries with Greatly Improved Volumetric Capacity and Coulombic Efficiency. Advanced Materials, 29, Article ID: 1701294. https://doi.org/10.1002/adma.201701294
 |