二维色散Quasi-Geostrophic方程组的整体适定性
Global Well-Posedness of Two-Dimensional Dispersive Quasi-Geostrophic Equations
摘要: 本文研究一类二维色散 quasi-geostrophic 方程组初值问题的整体适定性。 通过引进一类高低频具有不同正则性指标的混合型 Besov 空间,并通过建立相应的色散半群在其上的一致有界性估计,证明了该二维色散 quasi-geostrophic 方程组关于混合型临界 Besov 空间中一致小初值的整体适定性。
Abstract: This paper is devoted to studying the global well-posedness of Cauchy problem for the two-dimensional dispersive  quasi-geostrophic  equations. By  introducing  a  kind of Hybrid-Besov spaces with different regularity indices at high frequency and low frequency, and by establishing the uniformly bounded estimations of the corresponding dispersive operator semigroup on these new function spaces, the global well-posedness of the 2D dispersive quasi-geostrophic equations is obtained for uniformly small initial values in  the critical  functional framework.
文章引用:邵溶. 二维色散Quasi-Geostrophic方程组的整体适定性[J]. 理论数学, 2021, 11(8): 1517-1534. https://doi.org/10.12677/PM.2021.118171

参考文献

[1] Held, I., Pierrehumbert, R., Garner, S. and Swanson, K.L. (2006) Surface Quasi-Geostrophic Dynamics. Journal of Fluid Mechanics, 282, 1-20. [Google Scholar] [CrossRef
[2] Constantin, P., Majda, A.J. and Tabak, E. (2015) Formation of Strong Fronts in the 2-D Quasigeostrophic Thermal Active Scalar. Nonlinearity, 7, 1495-1533. [Google Scholar] [CrossRef
[3] Pedlosky, J. (1987) Geophysical Fluid Dynamics. Springer, Berlin. [Google Scholar] [CrossRef
[4] Chen, Q.L., Miao, C.X. and Zhang, Z.F. (2007) A New Bernstein’s Inequality and 2D Dissi- pative Quasi-Geostrophic Equation. Communications in Mathematical Physics, 271, 821-838. [Google Scholar] [CrossRef
[5] Cordoba, D. (1998) Nonexistence of Simple Hyperbolic Blow-Up for the Quasi-Geostrophic Equation. Annals of Mathematics, 148, 1135-1152. [Google Scholar] [CrossRef
[6] Constantin, P. and Wu, J.H. (1999) Behavior of Solutions of 2D Quasi-Geostrophic Equations. SIAM Journal on Mathematical Analysis, 30, 937-948. [Google Scholar] [CrossRef
[7] Wu, J. (1997) Quasi-Geostrophic-Type Equations with Initial Data in Morrey Spaces. Nonlin- earity, 10, 1409-1420. [Google Scholar] [CrossRef
[8] Wu, J. (1998) Quasi-Geostrophic Type Equations with Weak Initial Data. Electronic Journal of Differential Equations, 1998, 1-10.
[9] Wu, J. (2001) Dissipative Quasi-Geostrophic Equations with Lp Data. Electronic Journal of Differential Equations, 2001, 1-13.
[10] Constantin, P., Cordoba, D. and Wu, J. (2001) On the Critical Dissipative Quasi-Geostrophic Equation. Indiana University Mathematics Journal, 50, 97-108. [Google Scholar] [CrossRef
[11] Kiselev, A., Nazarov, F. and Volberg, A. (2007) Global Well-Posedness for the Critical 2D Dissipative Quasi-Geostrophic Equation. Inventiones Mathematicae, 167, 445-453. [Google Scholar] [CrossRef
[12] Caffarelli, L. and Vasseur, V. (2010) Drift Diffusion Equations with Fractional Diffusion and the Quasi-Geostrophic Equation. Annals of Mathematics, 171, 1903-1930. [Google Scholar] [CrossRef
[13] Chae, D. and Lee, J. (2004) Global Well-Posedness in the Super-Critical Dissipative Quasi- Geostrophic Equations. Communications in Mathematical Physics, 249, 511-528.
[14] Ju, N. (2004) Existence and Uniqueness of the Solution to the Dissipative 2D Quasi- Geostrophic Equations in the Sobolev Space. Communications in Mathematical Physics, 251, 365-376. [Google Scholar] [CrossRef
[15] Wu, J. (2004) Global Solutions of the 2D Dissipative Quasi-Geostrophic Equation in Besov Spaces. SIAM Journal on Mathematical Analysis, 36, 1014-1030. [Google Scholar] [CrossRef
[16] Wu, J. (2005) The Two-Dimensional Quasi-Geostrophic Equation with Critical or Supercritical Dissipation. Nonlinearity, 18, 139-154. [Google Scholar] [CrossRef
[17] Dabkowski, M. (2011) Eventual Regularity of the Solutions to the Supercritical Dissipative Quasi-Geostrophic Equation. Geometric and Functional Analysis, 21, 1-13. [Google Scholar] [CrossRef
[18] Dong, H. (2010) Dissipative Quasi-Geostrophic Equations in Critical Sobolev Spaces: Smooth- ing Effect and Global Well-Posedness. Discrete and Continuous Dynamical Systems, 26, 1197- 1211. [Google Scholar] [CrossRef
[19] Hmidi, T. and Keraani, S. (2007) Global Solutions of the Super-Critical 2D Quasi-Geostrophic Equation in Besov Spaces. Advances in Mathematics, 214, 618-638. [Google Scholar] [CrossRef
[20] Kiselev, A. and Nazarov, F. (2010) Global Regularity for the Critical Dispersive Dissipative Surface Quasi-Geostrophic Equation. Nonlinearity, 23, 549-554. [Google Scholar] [CrossRef
[21] Cannone, M., Miao, C. and Xue, L. (2013) Global Regularity for the Supercritical Dissipa- tive Quasi-Geostrophic Equation with Large Dispersive Forcing. Proceedings of the London Mathematical Society, 106, 650-674. [Google Scholar] [CrossRef
[22] Wan, R.H. and Chen, J.C. (2017) Global Well-Posedness of Smooth Solution to the Super- critical SQG Equation with Large Dispersive Forcing and Small Viscosity. Nonlinear Analysis, 164, 54-66.
[23] Elgindi, T.M. and Widmayer, K. (2015) Sharp Decay Estimates for an Anisotropic Linear Semi- group and Applications to the Surface Quasi-Geostrophic and Inviscid Boussinesq Systems. SIAM Journal on Mathematical Analysis, 47, 4672-4684. [Google Scholar] [CrossRef
[24] Danchin, R. (2001) Global Existence in Critical Spaces for Flows of Compressible Viscous and Heat-Conductive Gases. Archive for Rational Mechanics and Analysis, 160, 1-39. [Google Scholar] [CrossRef
[25] Bony, J.-M. (1981) Symbolic Calculus and Propagation of Singularities for Nonlinear Partial Differential Equations. Annales Scientifiques de l’E´cole Normale Sup´erieure, 14, 209-246. [Google Scholar] [CrossRef
[26] Cannone, M. (2004) Harmonic Analysis Tools for Solving the Incompressible Navier-Stokes Equations. In: Handbook of Mathematical Fluid Dynamics, Vol. 3, Elsevier, Amsterdam, 161- 244. [Google Scholar] [CrossRef