0.9K1-xNaxNbO3- 0.06LiNbO3-0.04SrTiO3 陶瓷压电性能温度稳定性研究
The Study of Piezoelectric Temperature Stability of 0.9K1-xNaxNbO3- 0.06LiNbO3-0.04SrTiO3Ceramics
DOI: 10.12677/ms.2011.11004, PDF, HTML, 下载: 4,311  浏览: 14,369  国家自然科学基金支持
作者: 赵静波*, 杜红亮, 屈绍波, 张红梅, 徐卓
关键词: 准同型相界铌酸钾钠压电温度稳定性
MPB; K0.5Na0.5NbO3; Piezoelectric; Temperature Stability
摘要: 铌酸钾钠基陶瓷中,通过对钾钠比率的精确控制,找到了类似锆钛酸铅的准同型相界,同时为了能够提高压电性能的温度稳定性,引入钛酸锶和铌酸锂,制备出了具有优异压电温度稳定性的铌酸钾钠基陶瓷0.9K0.46Na0.54NO3- 0.06LiNbO3-0.04SrTiO3, 在宽阔的温度范围25-250°C,压电系数d33=138-142pC/N,压电系数变化率TPP%<5%; 25-300°C,压电系数d33=114-142pC/N,压电系数变化率TPP%<20%;实验结果表明:这种陶瓷材料虽然压电系数不是很高,但是在宽阔的温度范围内具有优异的温度稳定性能,具有重要的工程应用价值。
Abstract: In K0.5Na0.5NbO3 based ceramics, morphotropic phase boundary(MPB) can be found via adjusting the K: Na ratio. At the same time, SrTiO3 and LiNbO3 were introduced to improve the temperature stability of K0.5Na0.5NbO3 based ceramics. 0.9K0.46Na0.54-0.06LiNbO3-0.04SrTiO3 ceramics was prepared and the piezoelectric temperature stability can be remarkably improved. Piezoelectric coefficient d33=138-142pC/N in the range 25-250°C,and the piezoelectric coefficient stability TPP%<5%;d33=114-142pC/N,TPP%<20% in the range 25-300°C. The results show 0.9K0.46Na0.54NO3- 0.06LiNbO3-0.04SrTiO3 ceramics possesses good piezoelectric temperature stability and it is of importance in engineering application.
文章引用:赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓. 0.9K1-xNaxNbO3- 0.06LiNbO3-0.04SrTiO3 陶瓷压电性能温度稳定性研究[J]. 材料科学, 2011, 1(1): 17-21. http://dx.doi.org/10.12677/ms.2011.11004

参考文献

[1] E. Cross. Lead-free at last. Nature, 2004, 432(4): 24.
[2] L. Egerton, D. M. Dillon. Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J Am Ceram Soc., 1959, 42(9): 438-442.
[3] Y. Salto, H. Takao and T. Tani. Lead-free piezoceramics. Nature, 2004, 432(4): 84.
[4] E. K. Akdogan, K. Kerman, and M. Abazari, et al. Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)(Nb0.84Ta0.1 Sb0.06)O3 ceramics. Appl. Phys. Lett., 2008, 92(11): p.112908.
[5] S. J. Zhang, R. Xia and R. S. Thomas. Modified (K0.5Na0.5)NbO3 based lead free piezoelectrics with broad temperature usage range. Appl. Phys. Lett., 2007, 91(13): p.132913.
[6] H. L. Du, W. C. Zhou, and F. Luo, et al. High Tm Lead-free Relaxor Ferroelectrics with Broad Temperature Usage Tange: 0.04BiScO3-0.96(K0.5Na0.5) NbO3. J. Appl. Phys., 2008, 104(4): 044104.
[7] J. G. Wu, D. Q. Xiao, and Y. Y. Wang, et al. CaTiO3-modified [(K0.5Na0.5)0.94Li0.06](Nb0.94Sb0.06)O3 Lead-free Piezoelectric Ceramics with Improved Temperature Stability. Scripta Materialia, 2008, 59(7): 750.
[8] L. Wu, J. L. Zhang, and S. F. Shao, et al. Phase Coexistence and High Piezoelectric Properties in (K0.40Na0.60)0.96Li0.04Nb0.80Ta0.20O3 Ceramics. Phys. D: Appl. Phys., 2008, 41(3): 035402.
[9] R. Z. Zuo and C. Ye. Structure and piezoelectric properties of (NaKLi)1–xTixO3 lead-free ceramics. Appl. Phys. Lett., 2007, 91(6): 062916.
[10] D. M. Lin, D. Q. Xiao and J. G.. Zhu. Dielectric and ferroelectric properties of [Bi0.5 (Na1–x–yKXLiY)0.5] TiO3 lead-free piezoelectric ceramics. Appl. Phys. Lett., 2006, 88(6): p.062901.
[11] 杜洪亮, 李智敏, 周万城等. K0.5Na0.5NbO3基无铅压电陶瓷的研究进展[J]. 无机材料学报, 2006, 21(6): 1281-1291.
[12] E. Ringgaard and T. Wurlitzer. Lead-free Piezoceramics Based on Alkali Niobates. Europ. Ceram. Soc., 2005, 25(12): 2701.
[13] M. Kosec, V. Bobnar, and M. Hrovat, et al. New Lead-Free Relaxors Based on the K0.5Na0.5Nb0.3–SrTi03 Solid Solution. J. Mater. Res., 2004, 19(6): 1849-1854.
[14] K. Kusumoto. Dielectric and Piezoelectric Properties of KNbO3-NaNbO3-LiNbO3-SrTiO3 Ceramics. Japanese Journal of Applied Phy-sics, 2006, 45: 7440-7443.
[15] V. Bobnar, B. Malič, and J. Holc, et al. Electrostrictive effect in lead-free relaxor K0.5Na0.5NbO3-SrTiO3 ceramics system. J. Appl. Phys., 2005, 98: p.024113.
[16] 明保全, 王矜奉, 臧国忠等. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析[J]. 物理学报, 2008, 76(9): 57.
[17] J. G. Wu, D. Q. Xiao, and Y. Y. Wang, et al. Effects of K/Na ratio on the phase structure and properties of (KxNa0.96–xLi0.04) (Nb0.91Ta0.05Sb0.04) O3 lead-free ceramics. Appl. Phys. Lett., 2007, 91(25): 252907.
[18] R. P. Wang, R. J. Xie, and K. Hanada, et al. Phase diagram and enhanced piezoelectricity in the strontium titanate doped potassium–sodium niobate solid solution. Phys. Stat. Sol. (a), 2005, 202(6): R57-R59.
[19] W. Cochran. Crystal Stability and the Theory of Ferroelectricity. Adv. Phys., 1960, 9(36): 387.
[20] Berlincourt D. In Ultrasonic Transducer Materials: Piezoelectric Crystals and Ceramics, London: London Plenum, 1971: Ch. 2.
[21] H. Jaffe. Preparation and properties of (K0.5Na0.5)NbO3-LiNbO3 ceramics. J. Am. Ceram. Soc., 1958, 41(11): 494.
[22] D. Schofield, R. F. Brown. An investigation of some barium titanate compositions for transducer applications. J. Phys., 1957, 35(5): 594-607.
[23] R. Wang, R. J. Xie, and K. Hanada, et al. Phase Diagram of the (Na0.5K0.5) NbO3-ATiO3 Solid Solution. Ferroelectrics, 2006, 336(1): 39-46.
[24] G. Z. Zang, J. F. Wang, and H. C. Chen, et al. Perovskite (Na0.5K0.5)1–x(LiSb)xNb1–xO3 lead-free piezoceramics. Appl. Phys. Lett., 2006, 88(21): p.212908.
[25] X. X. Wang, X. G. Tang and H. L. W. Chan. Electric mechanical and ferroelectric properties of BNT-BKT-BT lead-free piezoelectric ceramics. Appl. Phys. Lett., 2004, 85: 91.
[26] S. Zhao, G. Li, and A. Ding, et al. Ferroelectric and piezoelectric properties of (Na, K)0.5Bi0.5TiO3 lead-free ceramics. Phys. D: Appl. Phys., 2006, 39(10): 2277-2281.