|
[1]
|
Cai, N., Li, Y., Chen, S.F. and Su, X.G. (2016) A Fluorometric Assay Platform for Caffeic Acid Detection Based on the G-Quadruplex/Hemin DNAzyme. Analyst, 141, 4456-4462. [Google Scholar] [CrossRef]
|
|
[2]
|
Shahidi, F. and Ambigaipalan, P. (2018) Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annual Review of Food Science and Technology, 9, 345-381. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Rasouli, H., Farzaei, M.H. and Khodarahmi, R. (2017) Polyphenols and Their Benefits: A Review. International Journal of Food Properties, 20, 1700-1741. [Google Scholar] [CrossRef]
|
|
[4]
|
Demirkol, D.O., Gulsunoglu, B., Ozdemir, C., Dincer, A., Zihnioglu, F. and Timur, S. (2012) Caffeic Acid Detection Using an Inhibition-Based Lipoxygenase Sensor. Food Analytical Methods, 5, 244-249.
[Google Scholar] [CrossRef]
|
|
[5]
|
Diaconu, M., Litescu, S.C. and Radu, G.L. (2011) Laccase-MWCNT-Chitosan Biosensor—A New Tool for Total Polyphenolic Content Evaluation from In Vitro Cultivated Plants. Sensors & Actuators B: Chemical, 145, 800-806.
[Google Scholar] [CrossRef]
|
|
[6]
|
Ogawa, M., Shirasago, Y., Tanida, I., Kakuta, S., Uchiyama, Y., Shimojima, M., et al. (2021) Structural Basis of Antiviral Activity of Caffeic Acid against Severe Fever with Thrombocytopenia Syndrome Virus. Journal of Infection and Chemotherapy, 27, 397-400. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hernandes, L.C., Machado, A.R.T., Tuttis, K., Luís Ribeiro, D., Ferro Aissa, A., Pícoli Dévoz, P. and Antunes, L.M.G. (2020) Caffeic Acid and Chlorogenic Acid Cytotoxicity, Genotoxicity and Impact on Global DNA Methylation in Human Leukemic Cell Lines. Genetics and Molecular Biology, 43, Article ID: e20190347.
[Google Scholar] [CrossRef]
|
|
[8]
|
Kokulnathan, T., Raja, N., Chen, S.M. and Liao, W.C. (2017) Nanomolar Electrochemical Detection of Caffeic Acid in Fortified Wine Samples Based on Gold/Palladium Nanoparticles Decorated Graphene Flakes. Journal of Colloid and Interface Science, 501, 77-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Gambini, J., Gimeno-Mallench, L., Olaso-Gonzalez, G., Mastaloudis, A., Traber, M.G., Monleón, D., Borrás, C. and Viña, J. (2021) Moderate Red Wine Consumption Increases the Expression of Longevity-Associated Genes in Controlled Human Populations and Extends Lifespan in Drosophila melanogaster. Antioxidants, 10, Article No. 301.
[Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Govindasamy, M., Wang, S.F., Kumaravel, S., Jothi Ramalingam, R. and Al-Lohedan, H.A. (2019) Facile Synthesis of Copper Sulfide Decorated Reduced Graphene Oxide Nanocomposite for High Sensitive Detection of Toxic Antibiotic in Milk. Ultrasonics Sonochemistry, 52, 382-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Matejczyk, M., Swislocka, R., Golonko, A., Lewandowski, W. and Hawrylik, E. (2018) Cytotoxic, Genotoxic and Antimicrobial Activity of Caffeic and Rosmarinic Acids and Their Lithium, Sodium and Potassium Salts as Potential Anticancer Compounds. Advances in Medical Sciences, 63, 14-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Medina-Plaza, C., García-Cabezón, C., García-Hernández, C., Bramorski, C., BlancoVal, Y., Martín-Pedrosa, F., Kawai, T., de Saja, J.A. and Rodríguez-Méndez, M.L. (2015) Analysis of Organic Acids and Phenols of Interest in the Wine Industry Using Langmuir—Blodgett Films Based on Functionalized Nanoparticles. Analytica Chimica Actaa, 853, 572-578. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yan, Y., Bo, X. and Guo, L. (2020) MOF-818 Metal-Organic Framework-Reduced Graphene Oxide/Multiwalled Carbon Nanotubes Composite for Electrochemical Sensitive Detection of Phenolic Acids. Talanta, 218, Article ID: 121123.
[Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Erady, V., Mascarenhas, R.J., Satpati, A.K., Bhakta, A.K., Mekhalif, Z., Delhalle, J. and Dhason, A. (2020) Carbon Paste Modified with Bi Decorated Multi-Walled Carbon Nanotubes and CTAB as a Sensitive Voltammetric Sensor for the Detection of Caffeic Acid. Microchemical Journal, 146, 73-82. [Google Scholar] [CrossRef]
|
|
[15]
|
Huang, D., Wang, L., Zhan, Y., Zou, L. and Ye, B. (2020) Photoelectrochemical Biosensor for CEA Detection Based on SnS2-GR with Multiple Quenching Effects of Au@CuS-GR. Biosensors and Bioelectronics, 140, Article ID: 111358. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhao, Y., Lisdat, F., Parak, W.J., Hickey, S.G., Tu, L., Sabir, N., Dorfs, D. and Bigall, N.C. (2013) Quantum-Dot-Based Photoelectrochemical Sensors for Chemical and Biological Detection. ACS Applied Materials & Interfaces, 5, 2800-2814. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Botelho, C.N., das Mercês Pereira, N., Silva, G.G., Silva de Menezes, A., Bezerra, C.W.B., Damos, F.S. and de Cássia Silva Luz, R. (2019) Photoelectrochemical-Assisted Determination of Caffeic Acid Exploiting a Composite Based Carbon Nanotubes, Cadmium Telluride Quantum Dots, and Titanium Dioxide. Analytical Methods, 11, 4775-4784. [Google Scholar] [CrossRef]
|
|
[18]
|
Zhu, S.R., Qi, Q., Zhao, W.N., Fang, Y. and Han, L. (2018) Enhanced Photocatalytic Activity in Hybrid Composite Combined BiOBr Nanosheets and Bi2S3 Nanoparticles. Journal of Physics and Chemistry of Solids, 121, 163-171.
[Google Scholar] [CrossRef]
|
|
[19]
|
Fan, D.W., Bao, C.Z., Liu, X., Feng, J.H., Wu, D., Ma, H.M., Wang, H., Wei, Q. and Du, B. (2019) Facile Fabrication of Visible Light Photoelectrochemical Immunosensor for SCCA Detection Based on BiOBr/Bi2S3 Heterostructures via Self-Sacrificial Synthesis Method. Talanta, 198, 417-423. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mikami, M., Komatsu, D., Hosoki, A., Nishiyama, M., Igawa, H., Seki, A., Kubodera, S. and Watanabe, K. (2020) Quick Response Hydrogen LSPR Sensor Based on a Hetero-Core Fiber Structure with Palladium Nanoparticles. Optics Express, 29, 48-54. [Google Scholar] [CrossRef]
|
|
[21]
|
Chen, X. and Mao, S.S. (2007) Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 107, 2891-2959. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Oh, S.Y., Heo N.S., Bajpai, V.K., Jang, S.-C., Ok, G., Cho, Y. and Huh, Y.S. (2019) Development of a Cuvette-Based LSPR Sensor Chip Using a Plasmonically Active Transparent Strip. Frontiers in Bioengineering and Biotechnology, 7, Article No. 299. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
van Dun, S., Ottmann, C., Milroy, L.-G. and Brunsveld, L. (2017) Supramolecular Chemistry tarGeting Proteins. Journal of the American Chemical Society, 139, 13960-13968. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Umar, A., Lee, J., Dey, J. and Choi, S.M. (2016) Seedless Synthesis of Monodisperse Cuboctahedral Gold Nanoparticles with Tunable Sizes. Chemistry of Materials, 28, 4962-4970. [Google Scholar] [CrossRef]
|
|
[25]
|
Yao, Y., Wei, X.J., Cai, Y., Kong, X.Q., Chen, J., Wu, J. and Shi, Y.J. (2018) Hybrid Supramolecular Materials Constructed From Pillar[5]Arene Based Host-Guest Interactions with Photo and Redox Tunable Properties. Journal of Colloid and Interface Science, 8, 48-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Cai, Y., Zhang, Zh.C., Ding, Y., Hu, L.P., Wang, J., Chen, T.T. and Yao, Y. (2021) Recent Development of Pillar[n]Arene-Based Amphiphiles. Chinese Chemical Letters, 32, 1267-1279. [Google Scholar] [CrossRef]
|
|
[27]
|
LeBlanc, O.H. and Grubb, W.T. (1976) Long-Lived Potassium Ion Selective Polymer Membrane Electrode. Analytical Chemistry, 48, 1658-1660. [Google Scholar] [CrossRef]
|
|
[28]
|
Boinski, T. and Szumna, A. (2012) A Facile, Moisture-Insensitive Method for SYNTHESIS of Pillar[5]Arenes—The Solvent Templation by Halogen Bonds. Tetrahedron, 68, 9419-9422. [Google Scholar] [CrossRef]
|
|
[29]
|
Xing, R., Yang, H., Li, S., Yang, J., Zhao, X., Wang, Q., Liu, S. and Liu, X. (2016) A Sensitive and Reliable Rutin Electrochemical Sensor Based on Palladium Phthalocyanine-MWCNTs-Nafion Nanocomposit. Journal of Solid State Electrochemistry, 21, 1219-1228. [Google Scholar] [CrossRef]
|
|
[30]
|
Du, J., Yue, R.R., Ren, F.F., Yao, Z.Q., Jiang, F.X., Yang, P. and Du, Y.K. (2013) Simultaneous Determination of Uric Acid and Dopamine Using a Carbon Fiber Electrode Modified by Layer-by-Layer Assembly of Graphene and Gold Nanoparticles. Gold Bulletin, 46, 137-144. [Google Scholar] [CrossRef]
|