Fock空间中有界小Hankel算子的符号
The Symbol Functions of Bounded Small Hankel Operatorsbetween Different Fock Space
摘要:
对于 α
1,α
2 > 0, 1 < p
2 < p
1 < ∞,本文考察当小 Hankel 算子h
fα2从F
α1p1 到
Fα2p2 有界时,其符号函数f有何性质。
Abstract:
For α1,α2 > 0, 1 < p2 < p1 < ∞, we study the property of symbol functions f when the small Hankel operators hfα2 are bounded from Fα1p1 to Fα2p2.
参考文献
|
[1]
|
Berger, C.A. and Coburn, L.A. (1987) Toeplitz Operators on the Segal-Bargmann Space.
Transactions of the American Mathematical Society, 301, 813-829. [Google Scholar] [CrossRef]
|
|
[2]
|
Berger, C.A. and Coburn, L.A. (1994) Heat Flow and Berezin-Toeplitz Estimates. American
Journal of Mathematics, 116, 563-590. [Google Scholar] [CrossRef]
|
|
[3]
|
Janson, S., Peetre, J. and Rochberg, R. (1987) Hankel Forms and the Fock Space. Revista
Matem´atica Iberoamericana, 3, 61-138. [Google Scholar] [CrossRef]
|
|
[4]
|
Tung, J. (2005) Fock Spaces. Ph.D. Thesis, University of Michigan, Ann Arbor.
|
|
[5]
|
Zhu, K.H. (2012) Analysis on Fock Spaces. Springer, New York.
|