|
[1]
|
Cohen-Rosenblum, A. and Cui, Q. (2019) Osteonecrosis of the Femoral Head. Orthopedic Clinics of North America, 50, 139-149. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Shah, K.N., Racine, J., Jones, L.C., et al. (2015) Pathophysiology and Risk Factors for Osteonecrosis. Current Reviews in Musculoskeletal Medicine, 8, 201-209. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Mont, M.A., Cherian, J.J., Sierra, R.J., et al. (2015) Nontraumatic Osteonecrosis of the Femoral Head: Where Do We Stand Today? A Ten-Year Update. The Journal of Bone and Joint Surgery. American Volume, 97, 1604-1627. [Google Scholar] [CrossRef]
|
|
[4]
|
Cheng, S., Liu, X., Gong, F., et al. (2021) Dexamethasone Promotes the Endoplasmic Reticulum Stress Response of Bone Marrow Mesenchymal Stem Cells by Activating the PERK-Nrf2 Signaling Pathway. Pharmacology Research & Perspectives, 9, e00791. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Pei, J., Fan, L., Nan, K., et al. (2017) Excessive Activation of TLR4/NF-κB Interactively Suppresses the Canonical Wnt/β-Catenin Pathway and Induces SANFH in SD Rats. Scientific Reports, 7, Article No. 11928. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Choi, H.R., Steinberg, M.E., et al. (2015) Osteonecrosis of the Femoral Head: Diagnosis and Classification Systems. Current Reviews in Musculoskeletal Medicine, 8, 210-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zalavras, C.G. and Lieberman, J.R. (2014) Osteonecrosis of the Femoral Head: Evaluation and Treatment. Journal of the American Academy of Orthopaedic Surgeons, 22, 455-464. [Google Scholar] [CrossRef]
|
|
[8]
|
Hetz, C., Zhang, K. and Kaufman, R.J. (2020) Mechanisms, Regulation and Functions of the Unfolded Protein Response. Nature Reviews Molecular Cell Biology, 21, 421-438. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hetz, C. (2012) The Unfolded Protein Response: Controlling Cell Fate Decisions under ER Stress and Beyond. Nature Reviews Molecular Cell Biology, 13, 89-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Rutkowski, D.T. and Hegde, R.S. (2010) Regulation of Basal Cellular Physiology by the Homeostatic Unfolded Protein Response. Journal of Cell Biology, 189, 783-794. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Rashid, H.O., Yadav, R.K, Kim, H., et al. (2015) ER Stress: Autophagy Induction, Inhibition and Selection. Autophagy, 11, 1956-1977. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Araki, K. and Nagata, K. (2011) Protein Folding and Quality Control in the ER. Cold Spring Harbor Perspectives in Biology, 3, a007526. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Dickhout, J.G., Carlisle, R.E. and Austin, R.C. (2011) Interrelationship between Cardiac Hypertrophy, Heart Failure, and Chronic Kidney Disease: Endoplasmic Reticulum Stress as a Mediator of Pathogenesis. Circulation Research, 108, 629-642. [Google Scholar] [CrossRef]
|
|
[14]
|
Afroze, D. and Kumar, A. (2019) ER Stress in Skeletal Muscle Remodeling and Myopathies. The FEBS Journal, 286, 379-398. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lenghel, A., Gheorghita, A.M., Vacaru, A.M., et al. (2020) What Is the Sweetest UPR Flavor for the β-Cell? That Is the Question. Frontiers in Endocrinology (Lausanne), 11, Article ID: 614123. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Acosta-Alvear, D., Karagöz, G.E., Fröhlich, F., et al. (2018) The Unfolded Protein Response and Endoplasmic Reticulum Protein Targeting Machineries Converge on the Stress Sensor IRE1. Elife, 7, e43036. [Google Scholar] [CrossRef]
|
|
[17]
|
Carrara, M., Prischi, F., Nowak, P.R., et al. (2015) Crystal Structures Reveal Transient PERK Luminal Domain Tetramerization in Endoplasmic Reticulum Stress Signaling. The EMBO Journal, 34, 1589-1600. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Karagöz, G.E., Acosta-Alvear, D., Nguyen, H.T., et al. (2017) An Unfolded Protein-Induced Conformational Switch Activates Mammalian IRE1. Elife, 6, e30700. [Google Scholar] [CrossRef]
|
|
[19]
|
Senft, D. and Ronai, Z.A. (2015) UPR, Autophagy, and Mitochondria Crosstalk Underlies the ER Stress Response. Trends in Biochemical Sciences, 40, 141-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Hetz, C., Chevet, E. and Oakes, S.A. (2015) Proteostasis Control by the Unfolded Protein Response. Nature Cell Biology, 17, 829-838. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kopp, M.C., Larburu, N., Durairaj, V., et al. (2019) UPR Proteins IRE1 and PERK Switch BiP from Chaperone to ER Stress Sensor. Nature Structural & Molecular Biology, 26, 1053-1062. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Chesnokova, E., Bal, N. and Kolosov, P. (2017) Kinases of eIF2a Switch Translation of mRNA Subset during Neuronal Plasticity. International Journal of Molecular Sciences, 18, E2213. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ohno, M. (2014) Roles of eIF2α Kinases in the Pathogenesis of Alzheimer’s Disease. Frontiers in Molecular Neuroscience, 7, 22. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
St-Arnaud, R. and Hekmatnejad, B. (2011) Combinatorial Control of ATF4-Dependent Gene Transcription in Osteoblasts. Annals of the New York Academy of Sciences, 1237, 11-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Jousse, C., Oyadomari, S., Novoa, I., et al. (2003) Inhibition of a Constitutive Translation Initiation Factor 2alpha Phosphatase, CReP, Promotes Survival of Stressed Cells. Journal of Cell Biology, 163, 767-775. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Han, J., Back, S.H., Hur, J., et al. (2013) ER-Stress-Induced Transcriptional Regulation Increases Protein Synthesis Leading to Cell Death. Nature Cell Biology, 15, 481-490. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Saito, A., Ochiai, K., Kondo, S., et al. (2011) Endoplasmic Reticulum Stress Response Mediated by the PERK- eIF2(alpha)-ATF4 Pathway Is Involved in Osteoblast Differentiation Induced by BMP2. Journal of Biological Chemistry, 286, 4809-4818. [Google Scholar] [CrossRef]
|
|
[28]
|
Credle, J.J., Finer-Moore, J.S., Papa, F.R., et al. (2005) On the Mechanism of Sensing Unfolded Protein in the Endoplasmic Reticulum. Proceedings of the National Academy of Sciences of the United States of America, 102, 18773-18784. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Duwaerts, C.C., Siao, K., Soon, R.K., et al. (2021) Hepatocyte-Specific Deletion of XBP1 Sensitizes Mice to Liver Injury through Hyperactivation of IRE1α. Cell Death & Differentiation, 28, 1455-1465. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Lee, A.H., Iwakoshi, N.N. and Glimcher, L.H. (2003) XBP-1 Regulates a Subset of Endoplasmic Reticulum Resident Chaperone Genes in the Unfolded Protein Response. Molecular and Cellular Biology, 23, 7448-7459. [Google Scholar] [CrossRef]
|
|
[31]
|
Wang, J.M., Qiu, Y., Yang, Z.Q., et al. (2017) Inositol-Requiring Enzyme 1 Facilitates Diabetic Wound Healing Through Modulating MicroRNAs. Diabetes, 66, 177-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Upton, J.P., Wang, L., Han, D., et al. (2012) IRE1α Cleaves Select microRNAs during ER Stress to Derepress Translation of Proapoptotic Caspase-2. Science, 338, 818-822. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Abdullah, A. and Ravanan, P. (2018) The Unknown Face of IRE1α-Beyond ER Stress. European Journal of Cell Biology, 97, 359-368. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hassler, J.R., Scheuner, D.L., Wang, S., et al. (2015) The IRE1α/XBP1s Pathway Is Essential for the Glucose Response and Protection of β Cells. PLOS Biology, 13, e1002277. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Shoulders, M.D., Ryno, L.M., Genereux, J.C., et al. (2013) Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Diverse ER Proteostasis Environments. Cell Reports, 3, 1279-1292. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Bommiasamy, H., Back, S.H., Fagone, P., et al. (2009) ATF6alpha Induces XBP1-Independent Expansion of the Endoplasmic Reticulum. Journal of Cell Science, 122, 1626-1636. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Jin, J.K., Blackwood, E.A., Azizi, K., et al. (2017) ATF6 Decreases Myocardial Ischemia/Reperfusion Damage and Links ER Stress and Oxidative Stress Signaling Pathways in the Heart. Circulation Research, 120, 862-875. [Google Scholar] [CrossRef]
|
|
[38]
|
Yoshikawa, A., Kamide, T., Hashida, K., et al. (2015) Deletion of Atf6α Impairs Astroglial Activation and Enhances Neuronal Death Following Brain Ischemia in Mice. Journal of Neurochemistry, 132, 342-353. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Jiang, D., Niwa, M. and Koong, A.C. (2015) Targeting the IRE1α-XBP1 Branch of the Unfolded Protein Response in Human Diseases. Seminars in Cancer Biology, 33, 48-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Pihán, P., Carreras-Sureda, A. and Hetz, C. (2017) BCL-2 Family: Integrating Stress Responses at the ER to Control Cell Demise. Cell Death & Differentiation, 24, 1478-1487. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Singh, R., Letai, A. and Sarosiek, K. (2019) Regulation of Apoptosis in Health and Disease: The Balancing Act of BCL-2 Family Proteins. Nature Reviews Molecular Cell Biology, 20, 175-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Bronner, D.N., Abuaita, B.H., Chen, X., et al. (2015) Endoplasmic Reticulum Stress Activates the Inflammasome via NLRP3- and Caspase-2-Driven Mitochondrial Damage. Immunity, 43, 451-462. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Lam, M., Lawrence, D.A., Ashkenazi, A., et al. (2018) Confirming a Critical Role for Death Receptor 5 and Caspase-8 in Apoptosis Induction by Endoplasmic Reticulum Stress. Cell Death & Differentiation, 25, 1530-1531. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Muñoz-Pinedo, C. and López-Rivas, A. (2018) A Role for Caspase-8 and TRAIL-R2/DR5 in ER-Stress-Induced Apoptosis. Cell Death & Differentiation, 25, 226. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Chang, T.K., Lawrence, D.A., Lu, M., et al. (2018) Coordination between Two Branches of the Unfolded Protein Response Determines Apoptotic Cell Fate. Molecular Cell, 71, 629-636.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Bai, R., Liu, W., Zhao, A., et al. (2015) Nitric Oxide Content and Apoptosis Rate in Steroid-Induced Avascular Necrosis of the Femoral Head. Experimental and Therapeutic Medicine, 10, 591-597. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Hu, H., Li, Z., Lu, M., et al. (2018) Osteoactivin Inhibits Dexamethasone-Induced Osteoporosis through Up-Regulating Integrin β1 and Activate ERK Pathway. Biomedicine & Pharmacotherapy, 105, 66-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Peng, P., Nie, Z., Sun, F., et al. (2021) Glucocorticoids Induce Femoral Head Necrosis in Rats through the ROS/JNK/c-Jun Pathway. FEBS Open Bio, 11, 312-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Almeida, M.Q. and Mendonca, B.B. (2020) Adrenal Insufficiency and Glucocorticoid Use during the COVID-19 Pandemic. Clinics (Sao Paulo), 75, e2022. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Wei, B.F., Feng, Z., Wei, W., et al. (2017) Associations of TNF-α-238 A/G and IL-10-1082 G/A Genetic Polymorphisms with the Risk of NONFH in the Chinese Population. Journal of Cellular Biochemistry, 118, 4872-4880. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Wang, C., Meng, H., Wang, Y., et al. (2018) Analysis of Early Stage Osteonecrosis of the Human Femoral Head and the Mechanism of Femoral Head Collapse. International Journal of Biological Sciences, 14, 156-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Gao, Y., Zhu, H., Wang, Q., et al. (2020) Inhibition of PERK Signaling Prevents against Glucocorticoid-Induced Endotheliocyte Apoptosis and Osteonecrosis of the Femoral Head. International Journal of Biological Sciences, 16, 543-552. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Cubillos-Ruiz, J.R., Mohamed, E. and Rodriguez, P.C. (2017) Unfolding Anti-Tumor Immunity: ER Stress Responses Sculpt Tolerogenic Myeloid Cells in Cancer. Journal for ImmunoTherapy of Cancer, 5, 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zhang, Y., Ma, L., Lu, E., et al. (2021) Atorvastatin Upregulates microRNA-186 and Inhibits the TLR4-Mediated MAPKs/NF-κB Pathway to Relieve Steroid-Induced Avascular Necrosis of the Femoral Head. Frontiers in Pharmacology, 12, Article ID: 583975. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Lv, W., Yu, M., Yang, Q., et al. (2021) Total Flavonoids of Rhizoma drynariae Ameliorate Steroid-Induced Avascular Necrosis of the Femoral Head via the PI3K/AKT Pathway. Molecular Medicine Reports, 23, 345. [Google Scholar] [CrossRef] [PubMed]
|