|
[1]
|
Jones, A.C., May, J.A., Sarpong, R., et al. (2014) Bis Hinzu Eine Symphonie der reaktivität: Kaskadenmitkatalysen und sigmatrope umlagerungen. Angewandte Chemie International Edition, 53, 2556-2591. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Martín Castro, A.M. (2004) Claisen Rearrangement over the Past Nine Decades. Chemical Reviews, 104, 2939-3002. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Tejedor, D., MÉndez-Abt, G., Cotos, L., et al. (2013) Propargyl Claisen Rearrangement: Allene Synthesis and Beyond. Chemical Society Reviews, 42, 458-471. [Google Scholar] [CrossRef]
|
|
[4]
|
Davies, H.M. and Walji, A.M. (2005) Direct Synthesis of (+)-Erogorgiaene through a Kinetic Enantiodifferentiating Step. Angewandte Chemie, 117, 1761-1763. [Google Scholar] [CrossRef]
|
|
[5]
|
Scheffler, G., Seike, H. and Sorensen, E.J. (2000) An Enantiospecific Synthesis of the Potent Immunosuppressant FR901483. Angewandte Chemie International Edition, 39, 4593-4596. [Google Scholar] [CrossRef]
|
|
[6]
|
Li, X. and Ovaska, T.V. (2007) Total Synthesis of (+/−)-Frondosin B. Organic Letters, 9, 3837-3840. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ilardi, E.A., Stivala, C.E. and Zakarian, A. (2009) [3,3]-Sigmatropic Rearrangements: Recent Applications in the Total Synthesis of Natural Products. Chemical Society Reviews, 38, 3133-3148. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Quillinan, A.J. and Scheinmann, F. (1971) Application of the Claisen Rearrangement to the Synthesis of Heterocyclic Bicyclo[2,2,2]octenones: An Approach to the Morellins Based on New Biogenetic Suggestions. Journal of the Chemical Society D: Chemical Communications, No. 16, 966-967. [Google Scholar] [CrossRef]
|
|
[9]
|
Wang, T., et al. (2001) Stereocontrolled Total Synthesis of Alkaloid G via the Oxy-Anion Cope Rearrangement and Improved Total Synthesis of (+)-ajmaline. Organic Letters, 3, 345-348. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Stivala, C.E. and Zakariana, A. (2008) Total Synthesis of (+)-Pinnatoxin A. Journal of the American Chemical Society, 130, 3774-3776. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Seo, J.H., Artman, G.D. and Weinreb, S.M. (2006) Synthetic Studies on Perophoramidine and the Communesins: Construction of the Vicinal Quaternary Stereocenters. The Journal of Organic Chemistry, 71, 8891-8900. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Bunte, J.O., et al. (2006) Formal Total Synthesis of (+)-Zaragozic Acid c through an Ireland-Claisen Rearrangement. Angewandte Chemie, 118, 6524-6528. [Google Scholar] [CrossRef]
|
|
[13]
|
Krause, N. and Winter, C. (2011) Gold-Catalyzed Nucleophilic Cyclization of Functionalized Allenes: A Powerful Access to Carbo- and Heterocycles. Chemical Reviews, 111, 1994-2009. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lu, P. and Wang, Y. (2012) The Thriving Chemistry of Ketenimines. Chemical Society Reviews, 41, 5687-5705. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Alajarin, M., Marin-Luna, M. and Vidal, A. (2012) Recent Highlights in Ketenimine Chemistry. European Journal of Organic Chemistry, 2012, 5637-5653. [Google Scholar] [CrossRef]
|
|
[16]
|
Ma, S. (2005) Some Typical Advances in the Synthetic Applications of Allenes. Chemical Reviews, 105, 2829-2872. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lu, P. and Wang, Y. (2010) Strategies for Heterocyclic Synthesis via Cascade Reactions Based on Ketenimines. Synlett, 2010, 165-173. [Google Scholar] [CrossRef]
|
|
[18]
|
Ye, J. and Ma, S. (2014) Palladium-Catalyzed Cyclization Reactions of Allenes in the Presence of Unsaturated Carbon-Carbon Bonds. Accounts of Chemical Research, 47, 989-1000. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Allen, D. and Tidwell, T.T. (2013) Ketenes and Other Cumulenes as Reactive Intermediates. Chemical Reviews, 113, 7287-7342. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Rannock, K.C. and Burpitt, R.D. (1965) The Preparation of 4-Pentenenitriles and 3,4-Pentadienenitriles from N-(2-alkenyl)-and N-(2-alkynyl) Amides. The Journal of Organic Chemistry, 30, 2564-2565. [Google Scholar] [CrossRef]
|
|
[21]
|
Walters, M.A., Mcdonough, C.S., Brown, P.S., et al. (1991) An Extremely Mild 3-Aza-Claisen Reaction. 1. Rearrangement of Simple N-Allylamides. Tetrahedron Letters, 32, 179-182. [Google Scholar] [CrossRef]
|
|
[22]
|
Walters, M.A., et al. (1993) An Extremely Mild 3-aza-claisen Reaction. 2. New Conditions and the Rearrangement of α-Heteroatom Substituted Amides. Tetrahedron Letters, 34, 1453-1456. [Google Scholar] [CrossRef]
|
|
[23]
|
Appel, R., Warning, K. and Ziehn, K. (1973) Ber die gemeinsameeinwirkung von phosphinen und tetrachlorkohlenstoff auf ammoniak (derivate), 12. ber zweineueverfahrenzurdarstellung von imidhalogeniden. Berichte der deutschenchemischen Gesellschaft, 106, 3450-3454. [Google Scholar] [CrossRef]
|
|
[24]
|
Yamato, E. and Sugasawa, S. (1970) Preparation of Nitrile from Primary Amide (I). Tetrahedron Letters, 11, 4383-4384. [Google Scholar] [CrossRef]
|
|
[25]
|
Kang, S.H. and Hong, C.Y. (1987) Simple Synthetic Routes to Geiparvarin. Tetrahedron Letters, 28, 675. [Google Scholar] [CrossRef]
|
|
[26]
|
Bestmann, H.J., Lienert, J. and Mott, L. (1968) Reaktionen von triphenylphosphinsowiedessenhydrobromid und dibromid, iv1) reaktionenzwischentriphenylphosphin-dibromid und substituiertensäureamiden. Justus Liebigs Annalen der Chemie, 718, 24-32. [Google Scholar] [CrossRef]
|
|
[27]
|
Cooper, D. and Trippett, S. (1979) Triethoxydi-iodophosphorane. Tetrahedron Letters, 20, 1725-1726. [Google Scholar] [CrossRef]
|
|
[28]
|
Baldwin, J.E., et al. (1990) Trifluoromethanesulfonic Anhydride, a Superior Reagent for the Conversion of Formamides to Isonitriles. Synlett, 1990, 603-604. [Google Scholar] [CrossRef]
|
|
[29]
|
Eckert, H., Forster, B. (1987) Triphosgene, a Crystalline Phosgene Substitute. Angewandte Chemie International Edition, 26, 894-895. [Google Scholar] [CrossRef]
|
|
[30]
|
Bargar, T.M. and Riley, C.M. (1980) A Rapid and Efficient Method for Dehydration of Primary Amides to Nitriles. Preparation of Acrylonitrile Derivatives. Synthetic Communications, 10, 479-487. [Google Scholar] [CrossRef]
|
|
[31]
|
Saraie, T., Ishiguro, T., Kawashima, K., et al. (1973) A New Synthesis of Nitriles. Tetrahedron Letters, 14, 2121-2124. [Google Scholar] [CrossRef]
|
|
[32]
|
Nubbemeyer, U. (1993) Synthesis of (+)-canadensolide, (−)-santolinolide a and (+)-santolinolide b: The Imino-Claisen Reaction in Natural Product Synthesis. Synthesis, 1993, 1120-1128. [Google Scholar] [CrossRef]
|
|
[33]
|
Walters, M.A. (1994) Ab Initio Investigation of Three 3-Aza-Claisen Variations. Journal of the American Chemical Society, 116, 539-539. [Google Scholar] [CrossRef]
|
|
[34]
|
Walters, M.A., Hoem, A.B. and Mcdonough, C.S. (1996) Rearrangements of Substituted 3-Aza-1,2,5-Hexatrienes. 3. The Scope and Versatility of an Extremely Mild 3-Aza-Cope Reaction. Journal of Organic Chemistry, 61, 55-62. [Google Scholar] [CrossRef]
|
|
[35]
|
Brückner, R. and Huisgen, R. (1994) Homoallyl Cyanide and N-allylketeneimine; a [3, 3]sigmatropic Equilibrium. Tetrahedron Letters, 35, 3281-3284. [Google Scholar] [CrossRef]
|
|
[36]
|
Huisgen, R. and Brueckner, R. (1991) 2,2-Bis(trifluoromethyl)ethylene-1,1-dicarbonitrile as a Unique Enophile. Journal of Organic Chemistry, 56, 1679-1681. [Google Scholar] [CrossRef]
|
|
[37]
|
Molina, P., Mateo, A., Carmen, L., et al. (1993) Reaction of Allyl Iminophosphoranes with Ketenes and Acyl Chlorides: One-Pot Preparation of 4-Pentenenitriles. Tetrahedron, 49, 5153-5168. [Google Scholar] [CrossRef]
|
|
[38]
|
Alexander, J.R., Shchepetkina, V.I., Stankevich, K.S., et al. (2021) Pd-Catalyzed Rearrangement of n-alloc-n-allyl Ynamides via Auto-Tandem Catalysis: Evidence for Reversible c-n Activation and pd(0)-Accelerated Ketenimine Aza-Claisen Rearrangement. Organic Letters, 23, 559-564. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Dekorver, K.A., Hsung, R.P., Lohse, A.G., et al. (2010) A Divergent Mechanistic Course of pd(0)-Catalyzed Aza-Claisen Rearrangement and Aza-Rautenstrauch-Type Cyclization of n-Allyl Ynamides. Organic Letters, 12, 1840-1843. [Google Scholar] [CrossRef] [PubMed]
|