|
[1]
|
Pollak, P., Romeder, G., Hagedorn, F. and Gelbke, H.-P. (2000) Nitriles. In Bohnet, M., Brinker, C.G. and Cornils, B., Eds., Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 251-265. [Google Scholar] [CrossRef]
|
|
[2]
|
Wöuhrle, D. and Knothe, G. (1988) Polymers from Nitriles.VII. Polymerization of Fumaronitrile with Triethylamine Asinitiator. Journal of Polymer Science Part A: Polymer Chemistry, 26, 2435-2447. [Google Scholar] [CrossRef]
|
|
[3]
|
Fleming, F.F., Yao, L, Ravikumar, P.C., Funk, L. and Shook, B.C. (2010) Nitrile-Containing Pharmaceuticals: Efficacious Roles of the Nitrile Pharmacophore. Journal of Medicinal Chemistry, 53, 7902-7917. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ahren, B., Landin-Olsson, M., Jansson, P.A., Svensson, M., Holmes, D. and Schweizer, A. (2004) Inhibition of Dipeptidyl Peptidase-4 Reduces Glycemia, Sustains Insulin Levels, and Reduces Glucagon Levels in Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 89, 2078-2084. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bhatnagar, A.S. (2007) The Discovery and Mechanism of Action of Letrozole. Breast Cancer Research and Treatment, 105, 7-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Jakesz, R., Jonat, W., Gnant, M., Mittlboeck, M., Greil, R., Tausch, C., Hilfrich, J., Kwasny, W., Menzel, C., Samonigg, H., Seifert, M., Gademann, G., Kaufmann, M. and Wolfgang, J. (2005) Switching of Postmenopausal Women with Endocrine-Responsive Early Breast Cancer to Anastrozole after 2 Years’ Adjuvant Tamoxifen: Combined Results of ABCSG Trial 8 and ARNO 95 Trial. Lancet, 366, 455-462. [Google Scholar] [CrossRef]
|
|
[7]
|
Larock, R.C. (2018) Comprehensive Organic Transformations: A Guide to Functional Group Preparations, 3rd Edition, John Wiley & Sons, Inc., Hoboken. [Google Scholar] [CrossRef]
|
|
[8]
|
Zhong, Y.-H., Lee, J., Reamer, R.A. and Askin, D. (2004) New Method for the Synthesis of Diversely Functionalized Imidazolesfrom N-Acylated α-Aminonitriles. Organic Letters, 6, 929-931. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Storz, T., Heid, R., Zeldis, J., Hoagland, S.M., Rapisardi, V., Hollywood, S. and Morton, G. (2011) Convenient and Practical One-Pot Synthesis of 4-Chloropyrimidinesvia a Novel Chloroimidate Annulation. Organic Process Research & Development, 15, 918-924. [Google Scholar] [CrossRef]
|
|
[10]
|
Yeung, K.S., Farkus, M.E., Kadow, J.F. and Meanwell, N.A. (2005) ABase-Catalyzed, Direct Synthesis of 3, 5-Disubstituted 1,2,4-Triazoles from Nitriles and Hydrazides. Tetrahedron Letters, 46, 3429-3432. [Google Scholar] [CrossRef]
|
|
[11]
|
Horneff, T., Chuprakov, S., Chernyak, N., Gevorgyan, V. and Fokin, V.V. (2008) Rhodium-Catalyzed Transannulation of 1,2,3-Triazoles with Nitriles. Journal of the American Chemical Society, 130, 14972-14974. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ganesan, M. and Nagaraaj, P. (2020) Recent Developments in Dehydration of Primary Amides to Nitriles. Organic Chemistry Frontiers, 7, 3792-3814. [Google Scholar] [CrossRef]
|
|
[13]
|
Blum, J. and Fisher, A. (1970) A Novel Synthesis of Nitriles from Secondary Amides. Tetrahedron Letters, 11, 1963-1966. [Google Scholar] [CrossRef]
|
|
[14]
|
Blum, J., Fisher, A. and Greener, E. (1973) The Catalytic Decomposition of Secondary Carboxamides by Transition-Metal Complexes. Tetrahedron, 29, 1073-1081. [Google Scholar] [CrossRef]
|
|
[15]
|
Campbell, J.A., McDouglad, G., McNab, H., Rees, L.V.C. and Tyas, R.G. (2007) Laboratory Scale Synthesis of Nitriles by Catalysed Dehydration of Amides and Oximes under Flash Vacuum Pyrolysis (FVP) Conditions. Synthesis, 20, 3179-3184. [Google Scholar] [CrossRef]
|
|
[16]
|
Itagaki, S., Kamata, K., Yamaguchi, K. and Mizuno, N. (2013) Amonovacant Lacunary Silicotungstate as an Efficient Heterogeneous Catalyst for Dehydration of Primary Amides Tonitriles. ChemCatChem, 5, 1725-1728. [Google Scholar] [CrossRef]
|
|
[17]
|
Watanabe, Y., Okuda, F. and Tsuji, Y.J. (1990) Ruthenium Complex Catalyzed Dehydration of Carboxamides to Nitriles in the Presence of Urea Derivatives. Journal of Molecular Catalysis, 58, 87-94. [Google Scholar] [CrossRef]
|
|
[18]
|
Furuya, Y., Ishihara, K. and Yamamoto, H. (2007) Perrhenic Acid-Catalyzed Dehydration from Primary Amides, Aldoximes, N-Monoacylureas, and α-Substituted Ketoximes to Nitrile Compounds. Bulletin of the Chemical Society of Japan, 80, 400-406. [Google Scholar] [CrossRef]
|
|
[19]
|
Sueoka, S., Mitsudome, T., Mizugaki, T., Jitsukawa, K. and Kaneda, K. (2010) Supported Monomeric Vanadium Catalyst for Dehydration of Amides to Form Nitriles, Chemical Communications, 46, 8243-8245. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ruck, R.T. and Bergman, R.G. (2004) Zirconium-Mediated Conversion of Amides to Nitriles: A Surprising Additive Effect. Angewandte Chemie International Edition, 43, 5375-5377. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Maffioli, S.I., Marzorati, E. and Marazzi, A. (2005) Mild and Reversible Dehydration of Primary Amides with PdCl2 in Aqueous Acetonitrile. Organic Letters, 7, 5237-5239. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Manjula, K. and Pasha, M.A. (2007) Rapid Method of Converting Primary Amides to Nitriles and Nitriles to Primary Amides by ZnCl2 Using Microwaves under Different Reaction Conditions. Synthetic Communications, 37, 1545-1550. [Google Scholar] [CrossRef]
|
|
[23]
|
Zhang, W.D., Haskins, C.W., Yang, Y. and Dai, M.J. (2014) Synthesis of Nitriles via Palladium-Catalyzed Water Shuffling from Amides to Acetonitriles. Organic & Biomolecular Chemistry, 12, 9109-9112. [Google Scholar] [CrossRef]
|
|
[24]
|
Dubey, P., Gupta, S. and Singh, A.K. (2017) Trinuclear Complexes of Palladium(II) with Chalcogenated N-Hetero- cyclic Carbenes: Catalysis of Selective Nitrile-Primary Amide Interconversion and Sonogashira Coupling. Dalton Transactions, 46, 13065-13076. [Google Scholar] [CrossRef]
|
|
[25]
|
Al-Huniti, M.H., Rivera-Chávez, J., Colón, K.L., Stanley, J.L., Burdette, J.E., Pearce, C.J., Oberlies, N.H. and Croatt, M.P. (2018) Development and Utilization of a Palladium-Catalyzed Dehydration of Primary Amides to Form Nitriles. Organic Letters, 20, 6046-6050. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Okabe, H., Naraoka, A., Isogawa, T., Oishi, S. and Naka, H. (2019) Acceptor-Controlled Transfer Dehydration of Amides to Nitriles. Organic Letters, 21, 4767-4770. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hanada, S., Motoyama, Y. and Nagashima, H. (2008) Hydrosilanes Are Not Always Reducing Agents for Carbonyl Compounds but Can Also Induce Dehydration: A Ruthenium-Catalyzed Conversion of Primary Amides to Nitriles. European Journal of Organic Chemistry, 2008, 4097-4100. [Google Scholar] [CrossRef]
|
|
[28]
|
Zhou, S.L., Addis, D., Das, S., Junge, K. and Beller, M. (2009) New Catalytic Properties of Iron Complexes: Dehydration of Amides to Nitriles. Chemical Communications, 45, 4883-4885. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bezier, D., Venkanna, G.T., Sortais, J.B. and Darcel, C. (2011) Well-Defined Cyclopentadienyl NHC Iron Complex as the Catalyst for Efficient Hydrosilylation of Amides to Amines and Nitriles. ChemCatChem, 3, 1747-1750. [Google Scholar] [CrossRef]
|
|
[30]
|
Enthaler, S. and Weidauer, M. (2011) Copper-Catalyzed Dehydration of Primary Amides to Nitriles. Catalysis Letters, 141, Article No. 1079. [Google Scholar] [CrossRef]
|
|
[31]
|
Enthaler, S. (2011) Straightforward Uranium-Catalyzed Dehydration of Primary Amides to Nitriles. Chemistry—A European Journal, 17, 9316-9319. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Enthaler, S. (2011) Straightforward Iron-Catalyzed Synthesis of Nitrilesby Dehydration of Primary Amides. European Journal of Organic Chemistry, 2011, 4760-4763. [Google Scholar] [CrossRef]
|
|
[33]
|
Enthaler, S. and Inoue, S. (2012) An Efficient Zinc-Catalyzed Dehydration of Primary Amides to Nitriles. Chemistry—An Asian Journal, 7, 169-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Mineno, T., Shinada, M., Watanabe, K., Yoshimitsu, H., Miyashita, H. and Kansui, H. (2014) Highly-Efficient Conversion of Primary Amides to Nitriles Using Indium(III) Triflate as the Catalyst. International Journal of Organic Chemistry, 4, 1-6. [Google Scholar] [CrossRef]
|
|
[35]
|
Elangovan, S., Quintero-Duque, S., Dorcet, V., Roisnel, T., Norel, L., Darcel, C. and Sortais, J.B. (2015) Knölker-Type Iron Complexes Bearing an N-Heterocyclic Carbene Ligand: Synthesis, Characterization, and Catalytic Dehydration of Primary Amides. Organometallics, 34, 4521-4528. [Google Scholar] [CrossRef]
|
|
[36]
|
Xue, B.J., Sun, H.J., Wang, Y., Zheng, Y.Y., Li, X.Y., Fuhr, O. and Fenske, D. (2016) Efficient Reductive Dehydration of Primary Amides to Nitriles Catalyzed by Hydrido Thiophenolato Iron (II) Complexes under Hydrosilation Conditions. Catalysis Communications, 86, 148-150. [Google Scholar] [CrossRef]
|
|
[37]
|
Ren, S., Xie, S., Zheng, T., Wang, Y., Xu, S., Xue, B., Li, X., Sun, H., Fuhr, O. and Fenske, D. (2018) Synthesis of Silyl Iron Hydride via Si–H Activation and Its Dual Catalytic Application in the Hydrosilylation of Carbonyl Compounds and Dehydration of Benzamides. Dalton Transactions, 47, 4352-4359. [Google Scholar] [CrossRef]
|
|
[38]
|
Liu, R.Y., Bae, M. and Buchwald, S.L. (2018) Mechanistic Insight Facilitates Discovery of a Mild and Efficient Copper-Catalyzed Dehydration of Primary Amides to Nitriles Using Hydrosilanes. Journal of the American Chemical Society, 140, 1627-1631. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wang, Y.Y., Fu, L.Y., Qi, H.M., Chen, S.W. and Li, Y.H. (2018) Bioinspired Synthesis of Nitriles from Primary Amides via Zinc/Anhydride Catalysis. Asian Journal of Organic Chemistry, 7, 367-370. [Google Scholar] [CrossRef]
|
|
[40]
|
Zheng, T., Wang, Y., Yang, Z., Sun, H. and Li, X. (2019) Catalytic Effect of Iron Hydrides on Dehydration of Primary Amides to Nitriles. Chinese Journal of Organic Chemistry, 39, 2941-2945. [Google Scholar] [CrossRef]
|
|
[41]
|
Ren, S., Wang, Y., Yang, D., Sun, H. and Li, X. (2019) Dehydration of Primary Amides to Nitriles Catalyzed by [CNC]-Pincer Hydrido Cobalt(III) Complexes. Catalysis Communications, 120, 72-75. [Google Scholar] [CrossRef]
|
|
[42]
|
Li, Y., Zhao, Y., Wang, S. and Ma, X. (2019) Silica Supported Potassium Oxide Catalyst for Dehydration of 2-Picolinamide to form 2-Cyanopyridine. Chinese Chemical Letters, 30, 494-498. [Google Scholar] [CrossRef]
|
|
[43]
|
Yao, W., Fang, H., He, Q., Peng, D., Liu, G. and Huang, Z. (2019) A BEt3-Base Catalyst for Amide Reduction with Silane. The Journal of Organic Chemistry, 84, 6084-6093. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Das, H.S., Das, S., Dey, K., Singh, B., Haridasan, R.K., Das, A., Ahmed, J. and Mandal, S.K. (2019) Primary Amides to Amines or Nitriles: A Dual Role by a Single Catalyst. Chemical Communications, 55, 11868-11871. [Google Scholar] [CrossRef]
|
|
[45]
|
Li, K., Sun, H., Yang, W., Wang, Y., Xie, S., Li, X., Fuhr, O. and Fenske, D. (2020) Efficient Dehydration of Primary Amides to NitrilesCatalyzed by Phosphorus-Chalcogen Chelated Iron Hydrides. Applied Organometallic Chemistry, 34, Article No. e5337. [Google Scholar] [CrossRef]
|
|
[46]
|
Chang, G., Li, X., Zhang, P., Yang, W., Li, K., Wang, Y., Sun, H., Fuhr, O. and Fenske, D. (2020) Lewis Acid Promoted Dehydration of Amides to Nitriles Catalyzed by [PSiP]-Pincer Iron Hydrides. Applied Organometallic Chemistry, 34, Article No. e5466. [Google Scholar] [CrossRef]
|
|
[47]
|
Wang, Y., Zhang, H., Xie, S., Sun, H., Li, X., Fuhr, O. and Fenske, D. (2020) An Air-Stable N-Heterocyclic [PSiP] Pincer Iron Hydride and an Analogous Nitrogen Iron Hydride: Synthesis and Catalytic Dehydration of Primary Amides to Nitriles. Organometallics, 39, 824-833. [Google Scholar] [CrossRef]
|
|
[48]
|
Zhou, S.L., Junge, K., and Addis, D., Das, S. and Beller, M. (2009) A General and Convenient Catalytic Synthesis of Nitriles from Amides and Silanes. Organic Letters, 11, 2461-2464. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Hota, P.K., Maji, S., Ahmed, J., Rajendran, N.M. and Mandal, S.K. (2020) NHC-Catalyzed Silylative Dehydration of Primary Amides to Nitriles at Room Temperature. Chemical Communications, 56, 575-578. [Google Scholar] [CrossRef]
|
|
[50]
|
Shipilovskikh, S.A., Vaganov, V.Y., Denisova, E.I., Rubtsov, A.E. and Malkov, A.V. (2018) Dehydration ofAmides to Nitriles under Conditions of a Catalytic Appel Reaction. Organic Letters, 20, 728-731. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Ding, R., Liu, Y.G., Han, M.R., Jiao, W.Y., Li, J.Q., Tian, H.Y. and Sun, B.G. (2018) Synthesis of Nitriles from Primary Amides or Aldoximes under Conditions of a Catalytic Swern Oxidation. The Journal of Organic Chemistry, 83, 12939-12944. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Rai, A. and Yadav, L.D.S. (2013) Cyclopropenone-Catalyzed Direct Conversion of Aldoximes and Primary Amides into Nitriles. European Journal of Organic Chemistry, 2013, 1889-1893. [Google Scholar] [CrossRef]
|