|
[1]
|
Chemin, J.-Y., Desjardins, B., Gallagher, I. and Grenier, E. (2000) Fluids with Anisotropic Viscosity. ESAIM: Mathematical Modelling and Numerical Analysis, 34, 315-335. [Google Scholar] [CrossRef]
|
|
[2]
|
Iftimie, D. (2002) A Uniqueness Result for the Navier-Stokes Equations with Vanishing Vertical Viscosity. SIAM Journal on Mathematical Analysis, 33, 1483-1493. [Google Scholar] [CrossRef]
|
|
[3]
|
Iftimie, D. (1999) The 3D Navier-Stkoes Equation Seen as a Perturbation of the 2D Navier- Stkoes Equations. Bulletin de la Soci´et´e Math´ematique de France, 127, 473-517. [Google Scholar] [CrossRef]
|
|
[4]
|
Paicu, M. (2005) E´ quation anisotrope de Navier-Stokes dans des espaces critiques. Revista Matema´tica Iberoamericana, 21, 179-235. [Google Scholar] [CrossRef]
|
|
[5]
|
Chemin, J.-Y. and Zhang, P. (2007) On the Global Well Posedness to the 3-D Incompressible Anisotropic Navier-Stokes Equations. Communications in Mathematical Physics, 272, 529-566. [Google Scholar] [CrossRef]
|
|
[6]
|
Paicu, M. and Majdoub, M. (2009) Uniform Local Existence for Inhomogeneous Rotating Fluid Equations. Journal of Dynamics and Differential Equations, 21, 21-44. [Google Scholar] [CrossRef]
|
|
[7]
|
Paicu, M. and Zhang, P. (2011) Global Solutions to the 3-D Incompressible Anisotropic Navier- Stokes System in the Critical Spaces. Communications in Mathematical Physics, 307, 713-759. [Google Scholar] [CrossRef]
|
|
[8]
|
Ding, Y. and Sun, X. (2015) Uniqueness of Weak Solutions for Fractional Navier-Stokes Equa- tions. Frontiers of Mathematics in China, 10, 33-51. [Google Scholar] [CrossRef]
|
|
[9]
|
de Oliveira, H.B. (2019) Generalized Nacier-Stokes Equations with Nonlinear Anisotropic Vis- cosity. Analysis and Applications (Singap.), 17, 977-1003. [Google Scholar] [CrossRef]
|
|
[10]
|
Liu, Y., Paicu, M. and Zhang, P. (2020) Global Well-Posedness of 3-D Anisotropic Navier-Stokes System with Small Unidirectional Derivative. Archive for Rational Mechanics and Anal- ysis, 238, 805-843. [Google Scholar] [CrossRef]
|
|
[11]
|
Sun, X. and Liu, H. (2021) Uniqueness of the Weak Solution to the Fractional Anisotropic Navier-Stokes Equations. Mathematical Methods in the Applied Sciences, 44, 253-264. [Google Scholar] [CrossRef]
|
|
[12]
|
Li, F. and Yuan, B. (2021) Global Well-Posedness of the 3D Generalized Navier-Stokes E-quations with Fractional Partial Dissipation. Acta Applicandae Mathematicae, 171, 16 p. [Google Scholar] [CrossRef]
|
|
[13]
|
Abidin, M. and Chen, J. (2021) Global Well-Posedness for Fractional Navier-Stokes Equations in Variable Exponent Fourier-Besov-Morrey Spaces. Acta Mathematica Scientia, 41, 164-176. [Google Scholar] [CrossRef]
|
|
[14]
|
Lou, Z., Yang, Q., He, J. and He, K. (2021) Uniform Analytic Solutions for Fractional Navier- Stokes Equations. Applied Mathematics Letters, 112, 106784, 7 p. [Google Scholar] [CrossRef]
|