学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
理论数学
Vol. 11 No. 12 (December 2021)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
共轭类长两两最大公因子至多有两个素因子的有限单群
Finite Simple Groups in Which Any Two Different Conjugacy Class Lengths Have at Most Two Prime Divisors in Common
DOI:
10.12677/PM.2021.1112222
,
PDF
,
HTML
,
,
被引量
科研立项经费支持
作者:
张耀芳
:九江职业大学师范学院,江西 九江;
刘燕俊
:江西师范大学数学与统计学院,江西 南昌
关键词:
有限单群
;
共轭类
;
最大公因子
;
素因子
;
Finite Simple Group
;
Conjugacy Class
;
Greatest Common Divisor
;
Prime Divisor
摘要:
本文证明了A
5
是唯一满足任意两个不同共轭类长的最大公因子至多有两个(不一定不同)素因子的有限单群。
Abstract:
This paper shows that A
5
is the only finite simple group such that the greatest common divisor of any pair of its different conjugacy class lengths has at most two (not necessarily different) prime divisors.
文章引用:
张耀芳, 刘燕俊. 共轭类长两两最大公因子至多有两个素因子的有限单群[J]. 理论数学, 2021, 11(12): 1993-2002.
https://doi.org/10.12677/PM.2021.1112222
参考文献
[1]
Khukhro, E.I. and Mazurov, V.D. (2021) Unsolved Problems in Group Theory: The Kourovka Notebook. arXiv:1401.0300 [math.GR]
[2]
Lewis, M. (2005) The Number of Irreducible Character Degrees of Solvable Groups Satisfying the One-Prime Hypothesis. Algebras and Representation Theory, 8, 479-497.
https://doi.org/10.1007/s10468-005-3596-1
[3]
Hamblin, J. and Lewis, M. (2012) Solvable Groups Satisfying the Two-Prime Hypothesis, II. Algebras and Representation Theory, 15, 1099-1130.
https://doi.org/10.1007/s10468-011-9281-7
[4]
Liu, Y., Song, X. and Zhang, J. (2015) Nonsolvable Groups Satisfying the Prime-Power Hypothesis. Journal of Algebra, 442, 455-483.
https://doi.org/10.1016/j.jalgebra.2014.02.010
[5]
Du, N. and Lewis, M.L. (2017) The Prime-Power Hypothesis and Solvable Groups. Archiv der Mathematik (Basel), 109, 301-303.
https://doi.org/10.1007/s00013-017-1085-5
[6]
Camina, A.R. and Camina, R.D. (2017) One-Prime Power Hypothesis for Conjugacy Class Sizes. International Journal of Group Theory, 6, 13-19.
[7]
Dornhoff, L. (1971) Group Representation Theory, Part A: Ordinary Representation Theory. Marcel Dekker, New York.
[8]
Gorenstein, D. (1982) Finite Simple Groups. An Introduction to Their Classification. University Series in Mathematics. Plenum Publishing Corp., New York.
https://doi.org/10.1007/978-1-4684-8497-7 1
[9]
The GAP Group (2015) GAP-Groups, Algorithms, and Programming, Version 4.7.9.
http://www.gap-system.org
[10]
徐明昭. 有限群初步[M]. 北京: 科学出版社, 2013.
投稿
为你推荐
友情链接
科研出版社
开放图书馆