特殊图的双罗马控制数的研究
Research on the Double Roman Domination Number of Some Special Graphs
摘要:
令 G = (V (G), E(G)) 是—个简单连通图,函数 f : V (G) → {0, 1, 2, 3} 满足:1) 如果 f (v) = 0,那么至少存在v 的两个邻点 v
1, v
2, 使得f (v
1) = f (v
2) = 2,或至少存在 — 个邻点 u 使得f (u) = 3; 2) 如果 f (v) = 1,那么至少存在 v 的—个邻点 u 使得f (u) = 2或3。则称 f 为图 G 的—个双罗马控制函数(DRDF)。—个双罗马控制函数的权值为 f (V (G)) = ∑
u∈V (G) f (u)。图 G 的双罗马控制函数的最小权值称为图 G 的双罗马控制数,记作 γdR(G)。权值为
γdR(G) 的双罗马控制函数称为 G 的
γdR - 函数。本文主要给出了一些特殊图如:P
m☒P
n (m = 2, 3),P
n,t,K
n∗,M (C
n),M (P
n) 的双罗马控制数的确切值。
Abstract:
Let G = (V (G), E(G)) be a simple connected graph, a function f : V (G) → {0, 1, 2, 3} satisfies with the property that 1) if f (v) = 0, then vertex v must exist at least two neighbors v1, v2 such that f (v1) = f (v2) = 2 or one neighbor u such that f (u) = 3; 2) if f (v) = 1, then there must exist at least one neighbor u of v such that f (u) = 2 or 3, and f is called a double Roman domination function (DRDF). The weight of a DRDF is f (V (G)) = ∑u∈V (G) f (u). The minimum weight of a DRDF on G is the double Roman domination number, denoted by γdR(G). A double Roman domination function with the weight of γdR(G) is called a γdR-function of G. In this paper, we present the exact values of the double Roman domination numbers of some special graphs, such as Pm☒Pn (m = 2, 3), Pn,t, Kn∗, M (Cn), M (Pn).
参考文献
|
[1]
|
Berge, C. (1962) Theory of Graphs and Its Applications. Methuen, London.
|
|
[2]
|
Ore, O. (1962) Theory of Graphs. American Mathematical Society, Providence.
|
|
[3]
|
Stewart, I. (1999) Defend the Roman Empire. Scientific American, 281, 136-139. [Google Scholar] [CrossRef]
|
|
[4]
|
Beeler, R.A., Haynes, T.W. and Hedetniemi, S.T. (2016) Double Roman Domination. Discrete Applied Mathematics, 211, 23-29. [Google Scholar] [CrossRef]
|
|
[5]
|
Anu, V. and Lakshmanan, S.A. (2018) Double Roman Domination Number. Discrete Applied Mathematics, 244, 198-204. [Google Scholar] [CrossRef]
|
|
[6]
|
Ahangar, H.A., Chellali, M. and Sheikholeslami, S.M. (2017) On the Double Roman Domina- tion in Graphs. Discrete Applied Mathematics, 232, 1-7. [Google Scholar] [CrossRef]
|
|
[7]
|
陈优. 图的双罗马控制[D]: [硕士学位论文]. 郑州: 郑州大学, 2018.
|
|
[8]
|
杜良丽. 格子图的双罗马控制集[J]. 滁州学院学报, 2021, 23(2): 54-57.
|
|
[9]
|
Nazari-Moghaddam, S. and Volkmann, L. (2020) Critical Concept for Double Roman Domi- nation in Graphs. Discrete Mathematics, Algorithms and Applications, 12, 1-12. [Google Scholar] [CrossRef]
|
|
[10]
|
Bonchev, D.I. and Klein, D.J. (2002) On the Wiener Number of Thorn Trees, Stars, Rings, and Rods. Croatica Chemica Acta, 75, 613-620.
|
|
[11]
|
刘海英, 秦琼, 王志平, 马永刚. 中间图的pebbling数[J]. 大连海事大学学报, 2006, 32(4): 125-128.
|